A
.—5\%

>
< GENETIC
ALGORITHMS
/_‘.s in Search,
Optimization &

Machine Learning

W

Y

.

DAVID E. GOLDBERG

é"‘\
N
A U7

ALGORITHMS

in Search,
Optimization &
Mechine Learning

DAVID E. GOLDBERG

As a graduate student at the University of
Michigan, David E. Goldberg spear-
headed a successful project applying
genetic algorithms and classifier systems
to the control of natural gas pipelines.
After receiving his Ph.D. at the University
of Michigan, Dr. Goldberg joined the fac-
ulty of the University of Alabama at Tusca-
loosa where he is now Associate Professor
of Engineering Mechanics.

Dr. Goldberg has continued his research
in genetic algorithms and classifier sys-
tems and received a 1985 NSF Presiden-
tial Young Investigator Award for his
work. Dr. Goldberg has 12 years of con-
sulting experience in industry and gov-
ernment and has published numerous
articles and papers.

Genetic Algorithms in
Search, Optimization, and
Machine Learning

Genetic Algorithms in
Search, Optimization, and
Machine Learning

David E. Goldberg
The University of Alabama

A
vy
ADDISON-WESLEY PUBLISHING COMPANY, INC.
Reading, Massachusetts + Menlo Park, California + Sydney

Don Mills, Ontarioc * Madrid + SonlJuan + New York + Singapore
Amsterdam + Wokingham, England + Tokyo + Bonn

The procedures and applications presented in this book have been included for their in-
structional value. They have been tested with care but are not guaranteed for any partic-
ular purpose. The publisher does not offer any warranties or representations, nor does it
accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Goldberg, David E. (David Edward), 19535—
Genetic algorithms in search, optimization, and machine learning,

Bibliography: p.

Includes index.

1. Combinatorial optimization. 2. Algorithms.
3. Machine learning. 1. Title.
QA402.5.G635 1989 006.3'1 88-6276
ISBN 0-201-15767-5

Reprinted with corrections January, 1989

Copyright © 1989 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher. Printed
in the United States of America. Published simultaneously in Canada.

DEFGHIJ-HA-943210

Foreword

I first encountered David Goldberg as a young, PhD-bound Civil Engineer inquir-
ing about my course Infroduction to Adaptive Systems. He was something of an
anomaly becuase his severely practical field experience in the gas-pipeline indus-
try, and his evident interest in that industry, did not seem to dampen his interest
in what was, after all, an abstract course involving a lot of “biological stuff.” After
he enrolled in the course, I soon realized that his expressed interests in control,
gas pipelines, and Al were the surface tell-tales of a wide-ranging curiosity and a
talent for careful analysis. He was, and is, an engineer interested in building, but
he was, and is, equally interested in ideas.

Not long thereafter, Dave asked if [would be willing to co-chair (with Ben
Wylie, the chairman of our Civil Engineering Department) a dissertation investi-
gating the use of genetic algorithms and classifier systems in the control of gas-
pipeline transmission. My first reaction was that this was too difficult a problem
for a dissertation—there are no closed analytic solutions to even simple versions
of the problem, and actual operation involves long, craftsmanlike apprenticeships.
Dave persisted, and in a surprisingly short time produced a dissertation that, in
turn, produced for him a 1985 NSF Presidential Young Investigator Award. So
much for my intuition as to what constitutes a reasonable dissertation.

In the past few years GAs have gone from an arcane subject known to a few
of my students, and their students, to a subject engaging the curiosity of many
different research communities including researchers in economics, political sci-
ence, psychology, linguistics, immunology, biology, and computer science. A ma-
jor reason for this interest is that GAs really work. GAs offer robust proce lures
that can exploit massively parallel architectures and, applied to classifier systems,
they provide a new route toward an understanding of intelligence and adaptation.
David Goldberg's book provides a turnpike into this territory.

One cannot be around David Goldberg for long without being infected by
his enthusiasm and energy. That enthusiasm comes across in this book. It is also

iv

Foreword

an embodiment of his passion for clear explanations and carefully worked ex-
amples. His book does an exceptional job of making the methods of GAs and
classifier systems available to a wide audience. Dave is deeply interested in the
intellectual problems of GAs and classifier systems, but he is interested even more
in seeing these systems used. This book, I think, will be instrumental in realizing
that ambition.
Juhn Holland
Ann Arbor, Michigan

Preface

This book is about genetic algorithms (GAs)}—search procedures based on the
mechanics of natural selection and natural genetics. In writing it, [have tried to
bring together the computer techniques, mathematical tools, and research results
that will enable you to apply genetic algorithms to problems in your field. If you
choose to do so, you will join a growing group of researchers and practitioners
who have come to appreciate the natural analogues, mathematical analyses, and
computer techniques comprised by the genetic algorithm methodology.

The book is designed to be a textbook and a self-study guide. | have tested
the draft text in a one semester, senior-level undergraduate/first-year graduate
course devoted to genetic algorithms. Although the students came from different
backgrounds (biochemistry, chemical engineering, computer science, electrical
engineering, engineering mechanics, English, mathematics, mechanical engineer-
ing, and physics) and had wide differences in mathematical and computational
maturity, they all acquired an understanding of the basic algorithm and its theory
of operation. To reach such a diverse audience, the tone of the book is intention-
ally casual, and rigor has almost always been sacrificed in the interest of building
intuition and understanding. Worked out examples illustrate major topics, and
computer assignments are available at the end of each chapter.

I have minimized the mathematics, genetics, and computer background re-
quired to read this book. An understanding of introductory college-level mathe-
matics (algebra and a little calculus) is assumed. Elementary notions of counting
and finite probability are used, and Appendix A summarizes the important con-
cepts briefly. I assume no particular knowledge of genetics and define all required
genetic terminology and concepts within the text. Last, some computer program-
ming ability is necessary. If you have programmed a computer in any language,
you should be able to follow the computer examples I present. All computer code
in this book is written in Pascal, and Appendix B presents a brief introduction to
the essentials of that language.

vi Preface

Although I have not explicitly subdivided the book into separate parts, the
chapters may be grouped in two major categories: those dealing with search and
optimization and those dealing with machine learning.

The first five chapters are devoted to genetic algorithms in search and opti-
mization. Chapter 1 introduces the topic of genetic search; it also describes a
simple genetic algorithm and illustrates the GA's application through a hand cal-
culation. Chapter 2 introduces the essential theoretical basis of GAs, covering
topics including schemata, the fundamental theorem, and extended analysis. If
you dislike theory, you can safely skip Chapter 2 without excessive loss of con-
tinuity; however, before doing so, I suggest you try reading it anyway. The math-
ematical underpinnings of GAs are not difficult to follow, but their ramifications
are subtle; some attention to analysis early in the study of GAs promotes fuller
understanding of algorithm power. Chapter 3 introduces computer implementa-
tion of genetic algorithms through example. Specifically, a Pascal code called the
simple genetic algorithm (SGA) is presented along with a number of extensions.
Chapter 4 presents a historical account of early genetic algorithms together with
a potpourri of current applications. Chapter 5 examines more advanced genetic
operators and presents a number of applications illustrating their use, These in-
clude applications of micro- and macro-level operators as well as hybrid
techniques.

Chapters 6 and 7 present the application of genetic algorithms in machine
learning systems. Chapter 6 gives a generic description of one type of genetics-
based machine learning (GBML) system, a classifier system. The theory of oper-
ation of such a system is briefly reviewed, and one Pascal implementation called
the simple classifier system (SCS) is presented and applied to the learning of a
boolean function. Chapter 7 rounds out the picture of GBML by presenting a
historical review of early GBML systems together with a selective survey of other
current systems and topics.

ACKNOWLEDGMENTS

In writing acknowledgments for a book on genetic algorithms, there is no ques-
tion who should get top billing. I thank John H. Holland from the University of
Michigan for his encouragement of this project and for giving birth to the infant
we now recognize as the genetic algorithms movement. It hasn’'t been easy nur-
turing such a child. At times she showed signs of stunted intellectual growth, and
the other kids on the block haven't always treated her very nicely. Nonetheless,
John stood by his baby with the quiet confidence only a father can possess, know-
ing that his daughter would one day take her rightful place in the community of
ideas.

I also thank two men who have influenced me in more ways than they know:
E. Benjamin Wylie and William D. Jordan. Ben Wylie was my dissertation adviser

Preface vil

in Civil Engineering at the University of Michigan. When I approached him with
the idea for a dissertation about gas pipelines and genetic algorithms, he was
appropriately skeptical, but he gave me the rope and taught me the research and
organizational skills necessary not to hang myself. Bill Jordan was my Department
Head in Engineering Mechanics at The University of Alabama (he retired in
1986). He was and continues to be a model of teaching quality and administrative
fairness that I still strive to emulate.

1 thank my colleagues in the Department of Engineering Mechanics at Ala-
bama, A. E. Carden, C. H. Chang, C. R. Evces, §. C. Gambrell, J. L. Hill, 5. E. Jones,
D. C. Raney, and H. B. Wilson, for their encouragement and support. I also thank
my many colleagues in the genetic algorithms community. Particular thanks are
due Stewart Wilson at the Rowland Institute for Science for providing special
encouragement and a sympathetic ear on numerous occasions,

I thank my students (the notorious Bama Gene Hackers), including C. L.
Bridges, K. Deb, C. L. Karr, C. H. Kuo, R. Lingle, Jr., M. P Samtani, P. Segrest, T,
Sivapalan, R. E. Smith, and M. Valenzuela-Rendon, for lots of long hours and hard
work. | also recognize the workmanlike assistance rendered by a string of right-
hand persons: A. L. Thomas, S. Damsky, B. Korb, and K. Y. Lee.

I acknowledge the editorial assistance provided by Sarah Bane Wood at Ala-
bama. I am also grateful to the team at Addison-Wesley, including Peter Gordon,
Helen Goldstein, Helen Wythe, and Cynthia Benn, for providing expert advice
and assistance during this project.

I thank the reviewers, Ken De Jong, John Holland, and Stewart Wilson, for
their comments and suggestions.

A number of individuals and organizations have granted permission to reprint
or adapt materials originally printed elsewhere. I gratefully acknowledge the per-
mission granted by the following individuals: L. B. Booker, G. E. P. Box, K. A. De
Jong, S. Forrest,]. J. Grefenstette, J. H. Holland, J. D. Schaffer, 5. E Smith, and 5, W.
Wilson, I also acknowledge the permission granted by the following organiza-
tions: Academic Press, Academic Press London Ltd. (Jouwrnal of Theoretical Bi-
ology), the American Society of Civil Engineers, the Association for Computing
Machinery, the Conference Committee of the International Conference on Ge-
netic Algorithms, Kluwer Academic Publishers (Machine Learning), North-Hol-
land Physics Publishing, the Royal Statistical Society (Journal of the Royal
Statistical Society, C), and John Wiley and Sons, Inc.

I thank my spouse and still best friend, Mary Ann, for her patience and assis-
tance. There were more than a few evenings and weekends I didn't come home
when I said 1 would, and she proofread the manuscript, judiciously separating my
tolerable quips from my unacceptable quirks. Untold numbers of readers would
thank you, Nary (sic), if they knew the fate they have been spared by your sound
judgment.

This material is based upon work supported by the National Science Foun-
dation under Grant MSM-8451610. T am also grateful for research support pro-
vided by the Alabama Research Institute, Digital Equipment Corporation, Intel

viii

Preface

Corporation, Mr. Peter Prater, the Rowland Institute for Science, Texas Instru-
ments Incorporated, and The University of Alabama.

Last, it has become a cliche in textbooks and monographs; after thanking one
and all for their assistance, the author gallantly accepts blame for all remaining
errors in the text. This is usually done with no small amount of pomp and cir-
cumstance—a ritualistic incantation to ward off the evil spirits of error. 1 will
forgo this exercise and close these acknowledgments by paraphrasing a piece of
graffiti that I first spotted on the third floor of the West Engineering Building at
the University of Michigan:

To err is human. To really foul up, use a computer.

Unfortunately, in writing this book, | find myself subject to both of these sources
of error, and no doubt many mistakes remain. I can only take comfort in knowing
that error is the one inevitable side effect of our human past and the probable
destiny of our artificially intelligent future.

Contents

FOREWORD iii
PREFACE v

A GENTLE INTRODUCTION
TO GENETIC ALGORITHMS 1

What Are Genetic Algorithms? 1

Robustness of Traditional Optimization and Search Methods 2
The Goals of Optimization 6

How Are Genetic Algorithms Different from Traditional Methods? 7
A Simple Genetic Algorithm 10

Genetic Algorithms at Work—a Simulation by hand 15

Grist for the Search Mill—Important Similarities 18

Similarity Templates (Schemata) 19

Learning the Lingo 21

Summary 22

Problems 23

Computer Assignments 25

GENETIC ALGORITHMS REVISITED:
MATHEMATICAL FOUNDATIONS 27

Who Shall Live and Who Shall Die? The Fundamental Theorem 28
Schema Processing at Work: An Example by Hand Revisited 33
The Two-armed and k-armed Bandit Problem 36

How Many Schemata Are Processed Usefully? 40

Contents

The Building Block Hypothesis 41

Another Perspective: The Minimal Deceptive Problem 46
Schemata Revisited: Similarity Templates as Hyperplanes 53
Summary 54

Problems 55

Computer Assignments 50

COMPUTER IMPLEMENTATION OF
A GENETIC ALGORITHM 59

Data Structures 60

Reproduction, Crossover, and Mutation 62

A Time to Reproduce, a Time to Cross 66

Get with the Main Program 68

How Well Does it Work? 70

Mapping Objective Functions to Fitness Form 75
Fitness Scaling 76

Codings 80

A Multiparameter, Mapped, Fixed-Point Coding 82
Discretization 84

Constraints 85

Summary 86

Problems 87

Computer Assignments 88

SOME APPLICATIONS OF GENETIC ALGORITHMS

The Rise of Genetic Algorithms 89

Genetic Algorithm Applications of Historical Interest 92
De Jong and Function Optimization 106

Improvements in Basic Technique 120

Current Applications of Genetic Algorithms 125
Summary 142

Problems 143

Computer Assignments 145

ADVANCED OPERATORS AND TECHNIQUES IN
GENETIC SEARCH 147

Dominance, Diploidy, and Abeyance 148
Inversion and Other Reordering Operators 166

89

Contents

Other Micro-operators 179

Niche and Speciation 185

Multiobjective Optimization 197
Knowledge-Based Techniques 201

Genetic Algorithms and Parallel Processors 208
Summary 212

Problems 213

Computer Assignments 214

INTRODUCTION TO GENETICS-BASED
MACHINE LEARNING 217

Genetics-Based Machine Learning: Whence [t Came
What is a Classifier System? 221

Rule and Message System 223

Apportionment of Credit: The Bucket Brigade 225
Genetic Algorithm 229

A Simple Classifier System in Pascal 230

Results Using the Simple Classifier System 245
Summary 256

Problems 258

Computer Assignments 259

APPLICATIONS OF GENETICS-BASED
MACHINE LEARNING 261

The Rise of GBRBML 261

Development of CS-1, the First Classifier System 265
Smith’s Poker Player 270

Other Early GBML Efforts 276

A Potpourri of Current Applications 293

Summary 304

Problems 306

Computer Assignments 307

A LOOK BACK, A GLANCE AHEAD 309

APPENDIXES 313

218

xii Contents

A A REVIEW OF COMBINATORICS
AND ELEMENTARY PROBABILITY 313

Counting 313

Permutations 314

Combinations 316

Binomial Theorem 316

Events and Spaces 317

Axioms of Probability 318

Equally Likely Outcomes 319

Conditional Probability 321

Partitions of an Event 321

Bayes' Rule 322

Independent Events 322

Two Probability Distributions: Bernoulli and Binomial = 323
Expected Value of a Random Variable 323
Limit Theorems 324

Summary 324

Problems 325

PASCAL WITH RANDOM NUMBER GENERATION FOR
B FORTRAN, BASIC, AND COBOL PROGRAMMERS 327

Simplel: An Extremely Simple Code 327

Simple2: Functions, Procedures, and More /'O 330
Let’s Do Something 332

Last Stop Before Freeway 338

Summary 341

A SIMPLE GENETIC ALGORITHM
(SGA) IN PASCAL 343

D A SIMPLE CLASSIFIER SYSTEM
(SCS) IN PASCAL 351

PARTITION COEFFICIENT TRANSFORMS FOR
PROBLEM-CODING ANALYSIS 373

Partition Coefficient Transform 374
An Example: flx) = x* on Three Bits a Day 375
What do the Partition Coefficients Mean? 376

Contents xiii

Using Partition Coefficients to Analyze Deceptive Problems 377
Designing GA-Deceptive Problems with Partition Coefficients 377
Summary 378

Problems 378

Computer Assignments 379

BIBLIOGRAPHY 381
INDEX 403

A Gentle Introduction to
Genetic Algorithms

In this chapter, we introduce genetic algorithms: what they are, where they came
from, and how they compare to and differ from other search procedures. We
illustrate how they work with a hand calculation, and we start to understand their
power through the concept of a schema or similarity template.

WHAT ARE GENETIC ALGORITHMS?

Genetic algorithms are search algorithms based on the mechanics of natural se-
lection and natural genetics. They combine survival of the fittest among string
structures with a structured yet randomized information exchange to form a
search algorithm with some of the innovative flair of human search. In every
generation, a new set of artificial creatures (strings) is created using bits and
pieces of the fittest of the old; an occasional new part is tried for good measure.
While randomized, genetic algorithms are no simple random walk. They effi-
ciently exploit historical information to speculate on new search points with ex-
pected improved performance.

Genetic algorithms have been developed by John Holland, his colleagues, and
his students at the University of Michigan. The goals of their research have been
twofold: (1) to abstract and rigorously explain the adaptive processes of natural
systems, and (2) to design artificial systems software that retains the important
mechanisms of natural systems. This approach has led to important discoveries
in both natural and artificial systems science.

The central theme of research on genetic algorithms has been robustness,
the balance between efficiency and efficacy necessary for survival in many differ-

2 Chapter 1 / A Gentle Introduction to Genetic Algorithms

ent environments. The implications of robustness for artificial systems are mani-
fold. If artificial systems can be made more robust, costly redesigns can be
reduced or eliminated. If higher levels of adaptation can be achieved, existing
systems can perform their functions longer and better. Designers of artificial sys-
tems—both software and hardware, whether engineering systems, computer sys-
tems, or business systems—can only marvel at the robustness, the efficiency, and
the flexibility of biological systems. Features for self-repair, self-guidance, and re-
production are the rule in biological systems, whereas they barely exist in the
most sophisticated artificial systems.

Thus, we are drawn to an interesting conclusion: where robust performance
is desired (and where is it not?), nature does it better; the secrets of adaptation
and survival are best learned from the careful study of biological example. Yet
we do not accept the genetic algorithm method by appeal to this beauty-of-nature
argument alone. Genetic algorithms are theoretically and empirically proven to
provide robust search in complex spaces. The primary monograph on the topic
is Holland’s (1975) Adaptation in Natural and Artificial Systems. Many papers
and dissertations establish the validity of the technique in function optimization
and control applications. Having been established as a valid approach to problems
requiring efficient and effective search, genetic algorithms are now finding more
widespread application in business, scientific, and engineering circles. The rea-
sons behind the growing numbers of applications are clear. These algorithms are
computationally simple yet powerful in their search for improvement. Further-
more, they are not fundamentally limited by restrictive assumptions about the
search space (assumptions concerning continuity, existence of derivatives, uni-
modality, and other matters). We will investigate the reasons behind these attrac-
tive qualities; but before this, we need to explore the robustness of more widely
accepted search procedures.

ROBUSTNESS OF TRADITIONAL OPTIMIZATION
AND SEARCH METHODS

This book is not a comparative study of search and optimization techniques.
Nonetheless, it is important to question whether conventional search methods
meet our robustness requirements. The current literature identifies three main
types of search methods: calculus-based, enumerative, and random. Let us ex-
amine each type to see what conclusions may be drawn without formal testing.
Calculus-based methods have been studied heavily. These subdivide into two
main classes: indirect and direct. Indirect methods seek local extrema by solving
the usually nonlinear set of equations resulting from setting the gradient of the
objective function equal to zero. This is the multidimensional generalization of
the elementary calculus notion of extremal points, as illustrated in Fig. 1.1, Given
a smooth, unconstrained function, finding a possible peak starts by restricting
search to those points with slopes of zero in all directions. On the other hand,

Robustness of Traditional Optimization and Search Methods 3

f(x,y)

FIGURE 1.1 The single-peak function is easy for calculus-based methods.

direct (search) methods seek local optima by hopping on the function and mov-
ing in a direction related to the local gradient. This is simply the notion of bill-
climbing: to find the local best, climb the function in the steepest permissible
direction. While both of these calculus-based methods have been improved,
extended, hashed, and rehashed, some simple reasoning shows their lack of
robustness.

First, both methods are local in scope; the optima they seek are the best in a
neighborhood of the current point. For example, suppose that Fig. 1.1 shows a
portion of the complete domain of interest; a more complete picture is shown in
Fig. 1.2. Clearly, starting the search or zero-finding procedures in the neighbor-
hood of the lower peak will cause us to miss the main event (the higher peak).
Furthermore, once the lower peak is reached, further improvement must be
sought through random restart or other trickery. Second, calculus-based methods
depend upon the existence of derivatives (well-defined slope values). Even if we
allow numerical approximation of derivatives, this is a severe shortcoming. Many
practical parameter spaces have little respect for the notion of a derivative and
the smoothness this implies. Theorists interested in optimization have been too
willing to accept the legacy of the great eighteenth and nineteenth-century math-
ematicians who painted a clean world of quadratic objective functions, ideal con-
straints, and ever present derivatives. The real world of search is fraught with
discontinuities and vast multimodal, noisy search spaces as depicted in a less
calculus-friendly function in Fig. 1.3. [t comes as no surprise that methods de-
pending upon the restrictive requirements of continuity and derivative existence
are unsuitable for all but a very limited problem domain. For this reason and

Chapter 1 / A Gentle Introduction to Genetic Algorithms

f(x,)

FIGURE 1.2 The muliple-peak function causes a dilemma. Which hill should
we climb?

because of their inherently local scope of search, we must reject calculus-based
methods. They are insufficiently robust in unintended domains.

Enumerative schemes have been considered in many shapes and sizes. The
idea is fairly straightforward; within a finite search space, or a discretized infinite
search space, the search algorithm starts looking at objective function values at
every point in the space, one at a time. Although the simplicity of this type of

160
150 =
140 =
130
120
110 o

£ il

70 -
&0

40
30
20
10 S

0.00 0.20 0.40 0.60 0.80 1.00

FIGURE 1.3 Many functions are noisy and discontinuous and thus unsuitable
for search by traditional methods.

Robustness of Traditional Optimization and Search Methods 5

algorithm is attractive, and enumeration is a very human kind of search (when
the number of possibilities is small), such schemes must ultimately be discounted
in the robustness race for one simple reason: lack of efficiency. Many practical
spaces are simply too large to search one at a time and still have a chance of using
the information to some practical end. Even the highly touted enumerative
scheme dynamic programming breaks down on problems of moderate size and
complexity, suffering from a malady melodramatically labeled the “curse of di-
mensionality” by its creator (Bellman, 1961). We must conclude that less clever
enumerative schemes are similarly, and more abundantly, cursed for real
problems.

Random search algorithms have achieved increasing popularity as research-
ers have recognized the shortcomings of calculus-based and enumerative
schemes. Yet, random walks and random schemes that search and save the best
must also be discounted because of the efficiency requirement, Random searches,
in the long run, can be expected to do no better than enumerative schemes. In
our haste to discount strictly random search methods, we must be careful to
separate them from randomized techniques. The genetic algorithm is an example
of a search procedure that uses random choice as a tool to guide a highly exploi-
tative search through a coding of a parameter space. Using random choice as a
tool in a directed search process seems strange at first, but nature contains many
examples. Another currently popular search technique, simulated annealing,
uses random processes to help guide its form of search for minimal energy states,
A recent book (Davis, 1987) explores the connections between simulated an-
nealing and genetic algorithms. The important thing to recognize at this juncture
is that randomized search does not necessarily imply directionless search,

While our discussion has been no exhaustive examination of the myriad
methods of traditional optimization, we are left with a somewhat unsettling con-
clusion: conventional search methods are not robust. This does not imply that
they are not useful. The schemes mentioned and countless hybrid combinations
and permutations have been used successfully in many applications; however, as
more complex problems are attacked, other methods will be necessary. To put
this point in better perspective, inspect the problem spectrum of Fig. 1.4. In the
figure a mythical effectiveness index is plotted across a problem continuum for a
specialized scheme, an enumerative scheme, and an idealized robust scheme. The
gradient technique performs well in its narrow problem class, as we expect, but
it becomes highly inefficient (if useful at all) elsewhere. On the other hand, the
enumerative scheme performs with egalitarian inefficiency across the spectrum
of problems, as shown by the lower performance curve. Far more desirable would
be a performance curve like the one labeled Robust Scheme. It would be worth-
while sacrificing peak performance on a particular problem to achieve a relatively
high level of performance across the spectrum of problems. (Of course, with
broad, efficient methods we can always create hybrid schemes that combine the
best of the local search method with the more general robust scheme. We will
have more to say about this possibility in Chapter 5.) We shall soon see how
genetic algorithms help fill this robustness gap.

6 Chapter 1 / A Gentle Introduction to Genetic Algorithms

Robust Scheme

.—--—''—‘_‘--—...___‘_____-___-_____

Specialized Scheme

Efficiency

Enumeration or

Random Walk

combinatonal uimodal multimodal
Problem Type

FIGURE 1.4 Many traditional schemes work well in a narrow problem domain.
Enumerative schemes and random walks work equally inefficiently across a broad
spectrum. A robust method works well across a broad spectrum of problems.

THE GOALS OF OPTIMIZATION

Before examining the mechanics and power of a simple genetic algorithm, we
must be clearer about our goals when we say we want to optimize a function or
a process. What are we trying to accomplish when we optimize? The conven-
tional view is presented well by Beightler, Phillips, and Wilde (1979, p. 1):

Man's longing for perfection finds expression in the theory of optimiza-
tion. It studies how to describe and attain what is Best, once one knows
how to measure and alter what is Good or Bad. . . . Optimization theory
encompasses the quantitative study of optima and methods for finding
them.

Thus optimization seeks to improve performance toward some optimal point or
points. Note that this definition has two parts: (1) we seek improvement to ap-
proach some (2) optimal point. There is a clear distinction between the process
of improvement and the destinarion or optimum itself Yet, in judging optimiza-
tion procedures we commonly focus solely upon convergence (does the method
reach the optimum?) and forget entirely about interim performance. This empha-
sis stems from the origins of optimization in the calculus, It is not, however, a
natural emphasis.

How are Genetic Algorithms Different from Traditional Methods? 7

Consider a human decision maker, for example, a businessman. How do we
judge his decisions? What criteria do we use to decide whether he has done
a good or bad job? Usually we say he has done well when he makes adequate
selections within the time and resources allotted. Goodness is judged relative
to his competition. Does he produce a better widget? Does he get it to market
more efficiently? With better promotion? We never judge a businessman by an
attainment-of-the-best criterion; perfection is all too stern a taskmaster. As a re-
sult, we conclude that convergence to the best is not an issue in business or in
most walks of life; we are only concerned with doing better relative to others,
Thus, if we want more humanlike optimization tools, we are led to a reordering
of the priorities of optimization. The most important goal of optimization is im-
provement. Can we get to some good, “satisficing” (Simon, 1969) level of per-
formance quickly? Attainment of the optimum is much less important for
complex systems. [t would be nice to be perfect: meanwhile, we can only strive
to improve. In the next chapter we watch the genetic algorithm for these quali-
ties; here we outline some important differences between genetic algorithms and
more traditional methods.

HOW ARE GENETIC ALGORITHMS DIFFERENT FROM
TRADITIONAL METHODS?

In order for genetic algorithms to surpass their more traditional cousins in the
quest for robustness, GAs must differ in some very fundamental ways. Genetic
algorithms are different from more normal optimization and search procedures
in four ways:

1. GAs work with a coding of the parameter set, not the parameters themselves.

2. GAs search from a population of points, not a single point.

3. GAs use payoff (objective function) information, not derivatives or other
auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

Genetic algorithms require the natural parameter set of the optimization
problem to be coded as a finite-length string over some finite alphabet, As an
example, consider the optimization problem posed in Fig. 1.5. We wish to maxi-
mize the function f{x) = x7 on the integer interval [0, 31| With more traditional
methods we would be tempted to twiddle with the parameter x, turning it like
the vertical hold knob on a television set, until we reached the highest objective
function value. With GAs, the first step of our optimization process is to code the
parameter x as a finite-length string. There are many ways to code the x param-
eter, and Chapter 3 examines some of these in detail. At the moment, let's con-
sider an optimization problem where the coding comes a bit more naturally.

Consider the black box switching problem illustrated in Fig. 1.6. This prob-
lem concerns a black box device with a bank of five input switches. For every
setting of the five switches, there is an output signal £ mathematically f = f(s),

Chapter 1 / A Gentle Introduction to Genetic Algorithms

1000

fix)

X

FIGURE 1.5 A simple function optimization example, the function f{x) = &% on
the integer interval [0, 31].

where s is a particular setting of the five switches. The objective of the problem
is to set the switches to obtain the maximum possible f value. With other meth-
ods of optimization we might work directly with the parameter set (the switch
settings) and toggle switches from one setting to another using the transition
rules of our particular method. With genetic algorithms, we first code the
switches as a finite-length string. A simple code can be generated by considering
a string of five 1's and 0's where each of the five switches is represented by a 1 if
the switch is on and a 0 if the switch is off. With this coding, the string 11110
codes the setting where the first four switches are on and the fifth switch is off.
Some of the codings introduced later will not be so obvious, but at this juncture
we acknowledge that genetic algorithms use codings. Later it will be apparent

- fis)

s
OUTPUT SIGNAL

e PAYDFF
8488 o
OFFOFFOFFOFFOFF

FIGURE 1.6 A black box optimization problem with five on-off switches illus-
trates the idea of a coding and a payoff measure. Genetic algorithms only require
these two things: they don't need to know the workings of the black box.

How are Genetic Algorithms Different from Traditional Methods? 9

that genetic algorithms exploit coding similarities in a very general way; as a
result, they are largely unconstrained by the limitations of other methods (con-
tinuity, derivative existence, unimodality, and so on).

In many optimization methods, we move gingerly from a single point in the
decision space to the next using some transition rule to determine the next point,
This point-to-point method is dangerous because it is a perfect prescription for
locating false peaks in multimodal (many-peaked) search spaces. By contrast, GAs
work from a rich database of points simultaneously (a population of strings),
climbing many peaks in parallel; thus, the probability of finding a false peak is
reduced over methods that go point to point. As an example, let’s consider our
black box optimization problem (Fig. 1.6) again. Other techniques for solving
this problem might start with one set of switch settings, apply some transition
rules, and generate a new trial switch setting. A genetic algorithm starts with a
population of strings and thereafter generates successive populations of strings.
For example, in the five-switch problem, a random start using successive coin
flips (head = 1, tail = 0) might generate the initial population of size n = 4
(small by genetic algorithm standards):

01101
11000
01000
10011

After this start, successive populations are generated using the genetic algorithm.
By working from a population of well-adapted diversity instead of a single point,
the genetic algorithm adheres to the old adage that there is safety in numbers;
we will soon see how this parallel flavor contributes to a genetic algorithm's
robustness.

Many search techniques require much auxiliary information in order to work
properly. For example, gradient techniques need derivatives (calculated analyti-
cally or numerically) in order to be able to climb the current peak, and other
local search procedures like the greedy techniques of combinatorial optimization
(Lawler, 1976; Syslo, Deo, and Kowalik, 1983) require access to most if not all
tabular parameters. By contrast, genetic algorithms have no need for all this aux-
iliary information: GAs are blind. To perform an effective search for better and
better structures, they only require payoff values (objective function values) as-
sociated with individual strings. This characteristic makes a GA a more canonical
method than many search schemes. After all, every search problem has a metric
(or metrics) relevant to the search; however, different search problems have
vastly different forms of auxiliary information. Only if we refuse to use this aux-
iliary information can we hope to develop the broadly based schemes we desire.
On the other hand, the refusal to use specific knowledge when it does exist can
place an upper bound on the performance of an algorithm when it goes head to
head with methods designed for that problem. Chapter 5 examines ways to use
nonpayoff information in so-called knowledge-directed genetic algorithms; how-
ever, at this juncture we stress the importance of the blindness assumption to
pure genetic algorithm robustness.

10 Chapter 1 / A Gentle Introduction to Genetic Algorithms

Unlike many methods, GAs use probabilistic transition rules to guide their
search. To persons familiar with deterministic methods this seems odd, but the
use of probability does not suggest that the method is some simple random
search; this is not decision making at the toss of a coin. Genetic algorithms use
random choice as a tool to guide a search toward regions of the search space with
likely improvement.

Taken together, these four differences—direct use of a coding, search from a
population, blindness to auxiliary information, and randomized operators—con-
tribute to a genetic algorithm’s robustness and resulting advantage over other
more commonly used techniques. The next section introduces a simple three-
operator genetic algorithm.

A SIMPLE GENETIC ALGORITHM

The mechanics of a simple genetic algorithm are surprisingly simple, involving
nothing more complex than copying strings and swapping partial strings. The
explanation of why this simple process works is much more subtle and powerful.
Simplicity of operation and power of effect are two of the main attractions of the
genetic algorithm approach.

The previous section pointed out how genetic algorithms process popula-
tions of strings. Recalling the black box switching problem, remember that the
initial population had four strings:

01101
11000
01000
10011

Also recall that this population was chosen at random through 20 successive flips
of an unbiased coin. We now must define a set of simple operations that take this
initial population and generate successive populations that (we hope) improve
over time.

A simple genetic algorithm that yields good results in many practical prob-
lems is composed of three operators:

1. Reproduction
2. Crossover
3. Mutation

Reproduction is a process in which individual strings are copied according
to their objective function values, f (biologists call this function the fitness func-
tion). Intuitively, we can think of the function f as some measure of profit, utility,
or goodness that we want to maximize. Copying strings according to their fitness
values means that strings with a higher value have a higher probability of con-
tributing one or more offspring in the next generation. This operator, of course,
is an artificial version of natural selection, a Darwinian survival of the fittest

A Simple Genetic Algorithm 1

TABLE 1.1 Sample Problem Strings and Fitness Values

No. String Fitness % of Total
1 01101 169 14.4
2 11000 576 49.2
3 01000 64 5.5
4 10011 361 309
Toral 1170 100.0

among string creatures. In natural populations fitness is determined by a crea-
ture's ability to survive predators, pestilence, and the other obstacles to adult-
hood and subsequent reproduction. In our unabashedly artificial setting, the
objective function is the final arbiter of the string-creature’s life or death.

The reproduction operator may be implemented in algorithmic form in a
number of ways. Perhaps the easiest is to create a biased roulette wheel where
each current string in the population has a roulette wheel slot sized in proportion
to its fitness. Suppose the sample population of four strings in the black box
problem has objective or fitness function values f as shown in Table 1.1 (for now
we accept these values as the output of some unknown and arbitrary black box—
later we will examine a function and coding that generate these same values).

Summing the fitness over all four strings, we obtain a total of 1170. The
percentage of population total fitness is also shown in the table. The correspond-
ing weighted roulette wheel for this generation’s reproduction is shown in Fig.
1.7. To reproduce, we simply spin the weighted roulette wheel thus defined four
times. For the example problem, string number 1 has a fitness value of 169, which
represents 14.4 percent of the total fitness. As a result, string 1 is given 14.4
percent of the biased roulette wheel, and each spin turns up string 1 with prob-

FIGURE 1.7 Simple reproduction allocates offspring strings using a roulette
wheel with slots sized according to fitness. The sample wheel is sized for the
problem of Tables 1.1 and 1.2.

12

Chapter 1 / A Gentle Introduction to Genetic Algorithms

ability 0.144. Each time we require another offspring, a simple spin of the
weighted roulette wheel yields the reproduction candidate. In this way, more
highly fit strings have a higher number of offspring in the succeeding generation.
Once a string has been selected for reproduction, an exact replica of the string
is made. This string is then entered into a mating pool, a tentative new population,
for further genetic operator action.

After reproduction, simple crossover (Fig. 1.8) may proceed in two steps.
First, members of the newly reproduced strings in the mating pool are mated at
random. Second, each pair of strings undergoes crossing over as follows: an in-
teger position & along the string is selected uniformly at random between 1 and
the string length less one [1, { — 1]. Two new strings are created by swapping all
characters between positions £ + 1 and / inclusively. For example, consider
strings A, and A, from our example initial population:

Ab=0110]1
A, =1100]|0
Suppose in choosing a random number between 1 and 4, we obtain a k = 4 (as

indicated by the separator symbol |). The resulting crossover yields two new
strings where the prime (') means the strings are part of the new generation;

I

A, =01100
A, =11001

BEFORE CROSSOVER AFTER CROSSOVER

CROSSING SITE

STRING 1 E-Lﬂ_ﬂ_] MTNAND e smam s

s 2 VYV /V\J-U-U-Ls"“""“l'

FIGURE 1.8 A schematic of simple crossover shows the alignment of two
strings and the partial exchange of information, using a cross site chosen at
random.

A Simple Genetic Algorithm 13

The mechanics of reproduction and crossover are surprisingly simple, involy-
ing random number generation, string copies, and some partial string exchanges,
Nonetheless, the combined emphasis of reproduction and the structured, though
randomized, information exchange of crossover give genetic algorithms much of
their power. At first this seems surprising. How can two such simple (and com-
putationally trivial) operators result in anything useful, let alone a rapid and ro-
bust search mechanism? Furthermore, doesn’t it seem a little strange that chance
should play such a fundamental role in a directed search process? We will ex-
amine a partial answer to the first of these two questions in a moment; the answer
to the second question was well recognized by the mathematician J. Hadamard
(1949, p. 29):

We shall see a little later that the possibility of imputing discovery to
pure chance is already excluded. ... On the contrary, that there is an
intervention of chance but also a necessary work of unconsciousness,
the latter implying and not contradicting the former. . ., Indeed, it is ob-
vious that invention or discovery, be it in mathematics or anywhere else,
takes place by combining ideas.

Hadamard suggests that even though discovery is not a result—cannot be a re-
sult—of pure chance, it is almost certainly guided by directed serendipity. Fur-
thermore, Hadamard hints that a proper role for chance in a more humanlike
discovery mechanism is to cause the juxtaposition of different notions. It is in-
teresting that genetic algorithms adopt Hadamard'’s mix of direction and chance
in a manner that efficiently builds new solutions from the best partial solutions
of previous trials.

To see this, consider a population of n strings (perhaps the four-string pop-
ulation for the black box problem) over some appropriate alphabet, coded so
that each is a complete idea or prescription for performing a particular task (in
this case, each string is one complete switch-setting idea). Substrings within each
string (idea) contain various notions of what is important or relevant to the task,
Viewed in this way, the population contains not just a sample of n ideas; rather,
it contains a multitude of notions and rankings of those notions for task perfor-
mance. Genetic algorithms ruthlessly exploit this wealth of information by (1)
reproducing high-quality notions according to their performance and (2) cross-
ing these notions with many other high-performance notions from other strings.
Thus, the action of crossover with previous reproduction speculates on new ideas
constructed from the high-performance building blocks (notions) of past trials.
In passing, we note that despite the somewhat fuzzy definition of a notion, we
have not limited a notion to simple linear combinations of single features or pairs
of features. Biologists have long recognized that evolution must efficiently pro-
cess the epistasis (positionwise nonlinearity) that arises in nature. In a similar
manner, the notion processing of genetic algorithms must effectively process no-
tions even when they depend upon their component features in highly nonlinear
and complex ways.

14

Chapter 1 / A Gentle Introduction to Genetic Algorithms

Exchanging of notions to form new ideas is appealing intuitively, if we think
in terms of the process of innovation. What is an innovative idea? As Hadamard
suggests, most often it is a juxtaposition of things that have worked well in the
past. In much the same way, reproduction and crossover combine to search po-
tentially pregnant new ideas. This experience of emphasis and crossing is analo-
gous to the human interaction many of us have observed at a trade show or
scientific conference. At a widget conference, for example, various widget ex-
perts from around the world gather to discuss the latest in widget technology.
After the lecture sessions, they all pair off around the bar to exchange widget
stories. Well-known widget experts, of course, are in greater demand and ex-
change more ideas, thoughts, and notions with their lesser known widget col-
leagues. When the show ends, the widget people return to their widget
laboratories to try out a surfeit of widget innovations. The process of reproduc-
tion and crossover in a genetic algorithm is this kind of exchange. High-perfor-
mance notions are repeatedly tested and exchanged in the search for better and
better performance.

If reproduction according to fitness combined with crossover gives genetic
algorithms the bulk of their processing power, what then is the purpose of the
mutation operator? Not surprisingly, there is much confusion about the role of
mutation in genetics (both natural and artificial). Perhaps it is the result of too
many B movies detailing the exploits of mutant eggplants that consume mass
quantities of Tokyo or Chicago, but whatever the cause for the confusion, we find
that mutation plays a decidedly secondary role in the operation of genetic algo-
rithms. Mutation is needed because, even though reproduction and crossover
effectively search and recombine extant notions, occasionally they may become
overzealous and lose some potentially useful genetic material (1's or 0's at partic-
ular locations). In artificial genetic systems, the mutation operator protects
against such an irrecoverable loss. In the simple GA, mutation is the occasional
(with small probability) random alteration of the value of a string position. In the
binary coding of the black box problem, this simply means changinga 1 toa 0
and vice versa. By itself, mutation is a random walk through the string space.
When used sparingly with reproduction and crossover, it is an insurance policy
against premature loss of important notions.

That the mutation operator plays a secondary role in the simple GA, we sim-
ply note that the frequency of mutation to obtain good results in empirical
genetic algorithm studies is on the order of one mutation per thousand bit (po-
sition) transfers. Mutation rates are similarly small (or smaller) in natural popu-
lations, leading us to conclude that mutation is appropriately considered as a
secondary mechanism of genetic algorithm adaptation.

Other genetic operators and reproductive plans have been abstracted from
the study of biological example. However, the three examined in this section,
reproduction, simple crossover, and mutation, have proved to be both computa-
tionally simple and effective in attacking a number of important optimization
problems. In the next section, we perform a hand simulation of the simple genetic
algorithm to demonstrate both its mechanics and its power.

Genetic Algorithms at Work—A Simulation by Hand 15

GENETIC ALGORITHMS AT WORK—A SIMULATION BY HAND

Let's apply our simple genetic algorithm to a particular optimizatic = nroblem step
by step. Consider the problem of maximizing the function f{x) = x* where x is
permitted to vary between 0 and 31, a function displayed earlier as Fig. 1.5. To
use a genetic algorithm we must first code the decision variables of our problem
as some finite-length string. For this problem, we will code the variable x simply
as a binary unsigned integer of length 5. Before we proceed with the simulation,
let's briefly review the notion of a binary integer. As decadigited creatures, we
have little problem handling base 10 integers and arithmetic. For example, the
five-digit number 53,095 may be thought of as

5:10*" + 310 + 0:10*® + 9-10' + 5-1 = 53,095.

In base 2 arithmetic, we of course only have two digits to work with, 0 and 1,
and as an example the number 10,011 decodes to the base 10 number

1224+ 02°+022+ 12"+ 1-2°=16+2+ 1= 19

With a five-bit (binary digit) unsigned integer we can obtain numbers between
0 (00000) and 31 (11111). With a well-defined objective function and coding,
we now simulate a single generation of a genetic algorithm with reproduction,
crossover, and mutation.

To start off, we select an initial population at random. We select a population
of size 4 by tossing a fair coin 20 times. We can skip this step by using the initial
population created in this way earlier for the black box switching problem. Look-
ing at this population, shown on the left-hand side of Table 1.2, we observe that
the decoded x values are presented along with the fitness or objective function
values f{x). To make sure we know how the fitness values f(x) are calculated
from the string representation, let’s take a look at the third string of the initial
population, string 01000. Decoding this string as an unsigned binary integer, we
note that there is a single one in the 2* = 8’ position. Hence for string 01000
we obtain x = 8. To calculate the fitness or objective function we simply square
the x value and obtain the resulting fitness value flx) = 64. Other x and fix)
values may be obtained similarly.

You may notice that the fitness or objective function values are the same as
the black box values (compare Tables 1.1 and 1.2). This is no coincidence, and
the black box optimization problem was well represented by the particular func-
tion, f{x), and coding we are now using Of course, the genetic algorithm need
not know any of this; it is just as happy to optimize some arbitrary switching
function (or any other finite coding and function for that matter) as some poly-
nomial function with straightforward binary coding. This discussion simply rein-
forces one of the strengths of the genetic algorithm: by exploiting similarities in
codings, genetic algorithms can deal effectively with a broader class of functions
than can many other procedures.

A generation of the genetic algorithm begins with reproduction. We select
the mating pool of the next generation by spinning the weighted roulette wheel

16

Chapter 1 / A Gentle Introduction to Genetic Algorithms

TABLE 1.2 A Genetic Algorithm by Hand

. Actual
Initial Expected Count
P(}Pllli‘[lﬂl'l x Value psg[fct‘ count from
String Randomly Unsigned fx) £ /i Roulette
No. Generated Integer al b f Wheel
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4.0
Average 293 0.25 1.00 1.0
Max 576 0.49 1.97 2.0

(shown in Fig. 1.7) four times. Actual simulation of this process using coin tosses
has resulted in string 1 and string 4 receiving one copy in the mating pool, string
2 receiving two copies, and string 3 receiving no copies, as shown in the center
of Table 1.2. Comparing this with the expected number of copies (n-pselect,) we
have obtained what we should expect: the best get more copies, the average stay
even, and the worst die off.

With an active pool of strings looking for mates, simple crossover proceeds
in two steps: (1) strings are mated randomly, using coin tosses to pair off the
happy couples, and (2) mated string couples cross over, using coin tosses to
select the crossing sites. Referring again to Table 1.2, random choice of mates has
selected the second string in the mating pool to be mated with the first. With a
crossing site of 4, the two strings 01101 and 11000 cross and yield two new
strings 01100 and 11001. The remaining two strings in the mating pool are
crossed at site 2; the resulting strings may be checked in the table.

The last operator, mutation, is performed on a bit-by-bit basis. We assume
that the probability of mutation in this test is 0.001. With 20 transferred bit po-
sitions we should expect 20-0.001 = 0.02 bits to undergo mutation during a
given generation. Simulation of this process indicates that no bits undergo mu-
tation for this probability value. As a result, no bit positions are changed from 0
to 1 or vice versa during this generation.

Following reproduction, crossover, and mutation, the new population is
ready to be tested. To do this, we simply decode the new strings created by the
simple genetic algorithm and calculate the fitness function values from the x
values thus decoded. The results of a single generation of the simulation are
shown at the right of Table 1.2. While drawing concrete conclusions from a single
trial of a stochastic process is, at best, a risky business, we start to see how genetic
algorithms combine high-performance notions to achieve better performance. In
the table, note how both the maximal and average performance have improved
in the new population. The population average fitness has improved from 293 to

Genetic Algorithms ot Work—A Simulation by Hand 17

TABLE 1.2 (Continued)

Mating Pool after Mate Crossover Site

Reproduction (Randum!y) (Randuml)') New x fla)

(Cross Site Shown) Selected Selected Population Value al
0110]|1 2 4 01100 12 144
11000 1 4 11001 25 625
111|000 4 2 11011 27 729
10|]011 3 2 10000 16 256

1754

439

729
NOTES:

1) Initial population chosen by four repetitions of five coin tosses where heads = 1, tails = 0.

2) Reproduction performed through 1 part in 8 simulation of roulette wheel selection (three
coin [osses).

3) Crossover performed through binary decoding of 2 coin tosses (TT = 00, = 0 = cross site
I,HH = 11, = 3 = cross site 4).

4) Crossover probability assumed to be unity p, = 1.0

5) Mutation probability assumed to be 0.001, p_ = 0.001, Expected mutations = 54-0.001 =
0.02. No mutations expected during a single generation. None simulated.

439 in one generation. The maximum fitness has increased from 576 to 729 dur-
ing that same period. Although random processes help cause these happy circum-
stances, we start to see that this improvement is no fluke, The best string of the
first generation (11000) receives two copies because of its high, above-average
performance. When this combines at random with the next highest string
(10011) and is crossed at location 2 (again at random), one of the resulting
strings (11011) proves to be a very good choice indeed.

This event is an excellent illustration of the ideas and notions analogy devel-
oped in the previous section. In this case, the resulting good idea is the combi-
nation of two above-average notions, namely the substrings 11— ——and ———11.
Although the argument is still somewhat heuristic, we start to see how genetic
algorithms effect a robust search. In the next section, we expand our understand-
ing of these concepts by analyzing genetic algorithms in terms of schemata or
similarity templates.

The intuitive viewpoint developed thus far has much appeal. We have com-
pared the genetic algorithm with certain human search processes commonly
called innovative or creative. Furthermore, hand simulation of the simple genetic
algorithm has given us some confidence that indeed something interesting is
going on here. Yet, something is missing. What is being processed by genetic
algorithms and how do we know whether processing it (whatever it is) will lead
to optimal or near optimal results in a particular problem? Clearly, as scientists,

18 Chapter 1 / A Gentle Introduction to Genetic Algorithms

engineers, and business managers we need to understand the what and the how
of genetic algorithm performance.

To obtain this understanding, we examine the raw data available for any
search procedure and discover that we can search more effectively if we exploit
important similarities in the coding we use. This leads us to develop the impor-
tant notion of a similarity template, or schema. This in turn leads us to a key-
stone of the genetic algorithm approach, the building block hypothesis.

GRIST FOR THE SEARCH MILL—IMPORTANT SIMILARITIES

For much too long we have ignored a fundamental question. In a search process
given only payoff data (fitness values), what information is contained in a popu-
lation of strings and their objective function values to help guide a directed
search for improvement? To ask this question more clearly, consider the strings
and fitness values originally displayed in Table 1.1 from the simulation of the
previous section (the black box problem) and gathered below for convenience:

String Fitness
01101 169
11000 576
01000 G4
10011 361

What information is contained in this population to guide a directed search for
improvement? On the face of it, there is not very much: four indepen:c ~t samples
of different strings with their fitness values. As we stare at the page, however,
quite naturally we start scanning up and down the string column, and we notice
certain similarities among the strings. Exploring these similarities in more depth,
we notice that certain string patterns seem highly associated with good perfor-
mance. The longer we stare at the strings and their fitness values, the greater is
the temptation to experiment with these high fitness associations. It seems per-
fectly reasonable to play mix and match with some of the substrings that are
highly correlated with past success. For example, in the sample population, the
strings starting with a 1 seem to be among the best. Might this be an important
ingredient in optimizing this function? Certainly with our function (f{x) = x%)
and our coding (a five-bit unsigned integer) we know it is (why is this true?).
But, what are we doing here? Really, two separate things. First, we are seeking
similarities among strings in the population. Second, we are looking for causal
relationships between these similarities and high fitness. In so doing, we admit a
wealth of new information to help guide a search. To see how much and precisely

Similarity Templates (Schemata) 19

what information we admit, let us consider the important concept of a schema
(plural, schemata), or similarity template.

SIMILARITY TEMPLATES (SCHEMATA)

In some sense we are no longer interested in strings as strings alone. Since im-
portant similarities among highly fit strings can help guide a search, we question
how one string can be similar to its fellow strings. Specifically we ask, in what
ways is a string a representative of other string classes with similarities at certain
string positions? The framework of schemata provides the tool to answer these
questions.

A schema (Holland, 1968, 1975) is a similarity template describing a subset
of strings with similarities at certain string positions. For this discussion, let us
once again limit ourselves without loss of generality to the binary alphabet {0,1}.
We motivate a schema most easily by appending a special symbol to this alphabet;
we add the * or don’t care symbol. With this extended alphabet we can now
create strings (schemata) over the ternary alphabet {0, 1, *}, and the meaning of
the schema is clear if we think of it as a pattern matching device: a schema
matches a particular string if at every location in the schema a 1 matches a 1 in
the string, a 0 matches a 0, or a * matches either. As an example, consider the
strings and schemata of length 5. The schema *0000 matches two strings, namely
{10000, 00000}. As another example, the schema *111* describes a subset with
four members {01110, 01111, 11110, 11111}. As one last example, the schema
0*1** matches any of the eight strings of length 5 that begin with a 0 and have a
1 in the third position. As you can start to see, the idea of a schema gives us a
powerful and compact way to talk about all the well-defined similarities among
finite-length strings over a finite alphabet. We should emphasize that the * is only
a metasymbol (a symbol about other symbols); it is never explicitly processed
by the genetic algorithm. It is simply a notational device that allows description
of all possible similarities among strings of a particular length and alphabet.

Counting the total number of possible schemata is an enlightening exercise.
In the previous example, with / = 5, we note there are 3-3-3-3-3 = 3% = 243
different similarity templates because each of the five positions may be a 0, 1,
or *. In general, for alphabets of cardinality (number of alphabet characters) &
there are (k& + 1) schemata. At first blush, it appears that schemata are making
the search more difficult. For an alphabet with k& elements there are only (only?)
k' different strings of length I Why consider the (£ + 1) schemata and enlarge
the space of concern? Put another way, the length 5 example now has only 2° =
32 different alternative strings. Why make matters more difficult by considering
3% = 243 schemata? In fact, the reasoning discussed in the previous section makes
things easier. Do you recall glancing up and down the list of four strings and
fitness values and trying to figure out what to do next? We recognized that if we
considered the strings separately, then we only had four pieces of information;

20

Chapter 1 / A Gentle Introduction to Genetic Algorithms

however, when we considered the strings, their fitness values, and the similarities
among the strings in the population, we admitted a wealth of new information to
help direct our search. How much information do we admit by considering the
similarities? The answer to this question is related to the number of unique sche-
mata contained in the population. To count this quantity exactly requires knowl-
edge of the strings in a particular population. To get a bound on the number of
schemata in a particular population, we first count the number of schemata con-
tained in an individual string, and then we get an upper bound on the total num-
ber of schemata in the population.

To see this, consider a single string of length 5: 11111, for example. This
string is a member of 2% schemata because each position may take on its actual
value or a don't care symbol. In general, a particular string contains 2’ schemata,
As a result, a population of size n contains somewhere between 2’ and n+2' sche-
mata, depending upon the population diversity. This fact verifies our earlier in-
tuition. The original motivation for considering important similarities was to get
more information to help guide our search. The counting argument shows that a
wealth of information about important similarities is indeed contained in even
moderately sized populations. We will examine how genetic algorithms effec-
tively exploit this information. At this juncture, some parallel processing appears
to be needed if we are to make use of all this information in a timely fashion.

These counting arguments are well and good, but where does this all lead?
More pointedly, of the 2/ to n-2' schemata contained in a population, how many
are actually processed in a useful manner by the genetic algorithm? To obtain the
answer to this question, we consider the effect of reproduction, crossover, and
mutation on the growth or decay of important schemata from generation to gen-
eration. The effect of reproduction on a particular schema is easy to determine;
since more highly fit strings have higher probabilities of selection, on average we
give an ever increasing number of samples to the observed best similarity pat-
terns (this is a good thing to do, as is shown in the next chapter); however,
reproduction alone samples no new points in the space. What then happens to a
particular schema when crossover is introduced? Crossover leaves a schema un-
scathed if it does not cut the schema, but it may disrupt a schema when it does.
For example, consider the rwo schemata 1***0 and **11*. The first is likely to be
disrupted by crossover, whereas the second is relatively unlikely to be destroyed.
As a result, schemata of short defining length are left alone by crossover and
reproduced at a good sampling rate by reproduction operator. Mutation at nor-
mal, low rates does not disrupt a particular schema very frequently and we are
left with a startling conclusion. Highly fit, short-defining-length schemata (we call
them building blocks) are propagated generation to generation by giving expo-
nentially increasing samples to the observed best; all this goes in parallel with no
special bookkeeping or special memory other than our population of »n strings.
In the next chapter we will count how many schemata are processed usefully in
each generation. It turns out that the number is something like »*. This compares
favorably with the number of function evaluations (7). Because this processing
leverage is so important (and apparently unique to genetic algorithms), we give
it a special name, implicit parallelism.

Learning the Lingo N

LEARNING THE LINGO

The power behind the simple operations of our genetic algorithm is at least in-
tuitively clearer if we think of building blocks. Some questions remain: How do
we know that building blocks lead to improvement? Why is it a near optimal
strategy to give exponentially increasing samples to the best? How can we cal-
culate the number of schemata usefully processed by the genetic algorithm?
These questions are answered fully in the next chapter, but first we need to mas-
ter the terminology used by researchers who work with genetic algorithms, Be-
cause genetic algorithms are rooted in both natural genetics and computer
science, the terminology used in the GA literature is an unholy mix of the natural
and the artificial. Until now we have focused on the artificial side of the genetic
algorithm's ancestry and talked about strings, alphabets, string positions, and the
like. We review the correspondence between these terms and their natural coun-
terparts to connect with the growing GA literature and also to permit our own
occasional slip of a natural utterance or two.

Roughly speaking, the strings of artificial genetic systems are analogous to
chromosomes in biological systems. In natural systems, one or more chromo-
somes combine to form the total genetic prescription for the construction and
operation of some organism. In natural systems the total genetic package is called
the genotype In artificial genetic systems the total package of strings is called a
structure (in the early chapters of this book, the structure will consist of a single
string, so the text refers to strings and structures interchangeably until it is nec-
essary to differentiate berween them). In natural systems, the organism formed
by the interaction of the total genetic package with its environment is called the
phenotype In artificial genetic systems, the structures decode to form a partic-
ular parameter set, solution alternative or point (in the solution space). The
designer of an artificial genetic system has a variety of alternatives for coding
both numeric and nonnumeric parameters. We will confront codings and coding
principles in later chapters; for now, we stick to our consideration of GA and
natural terminology.

In natural terminology, we say that chromosomes are composed of genes,
which may take on some number of values called alleles. In genetics, the position
of a gene (its locus) is identified separately from the gene's function, Thus, we
can talk of a particular gene, for example an animal's eye color gene, its locus,
position 10, and its allele value, blue eyes. In artificial genetic search we say that
strings are composed of feafures or detectors, which take on different valfies.
Features may be located at different positions on the string. The correspondence
between natural and artificial terminology is summarized in Table 1.3.

Thus far, we have not distinguished between a gene (a particular character)
and its locus (its position); the position of a bit in a string has determined its
meaning (how it decodes) uniformly throughout a population and throughout
time. For example, the string 10000 is decoded as a binary unsigned integer 16
(base 10) because implicitly the 1 is in the 16's place. It is not necessary to limit
codings like this, however. A later chapter presents more advanced structures
that treat locus and gene separately.

22

Chapter 1 / A Gentle Introduction to Genetic Algorithms

TABLE 1.3 Comparison of Natural and GA Terminology

Natural Genetic Algorithm

chromosome string

gene feature, character, or detector

allele feature value

locus string position

genotype structure

phenotype parameter set, alternative solution,

a decoded structure

epistasis nonlinearity

SUMMARY

This chapter has laid the foundation for understanding genetic algorithms,
their mechanics and their power. We are led to these methods by our search for
robustness; natural systems are robust—efficient and efficacious—as they adapt
to a wide variety of environments. By abstracting nature’s adaptation algorithm
of choice in artificial form we hope to achieve similar breadth of performance.
In fact, genetic algorithms have demonstrated their capability in a number of
analytical and empirical studies.

The chapter has presented the detailed mechanics of a simple, three-operator
genetic algorithm. Genetic algorithms operate on populations of strings, with the
string coded to represent some underlying parameter set. Reproduction, cross-
over, and mutation are applied to successive string populations to create new
string populations. These operators are simplicity itself, involving nothing more
complex than random number generation, string copying, and partial string ex-
changing; yet, despite their simplicity, the resulting search performance is wide-
ranging and impressive. Genetic algorithms realize an innovative notion exchange
among strings and thus connect to our own ideas of human search or discovery.
A simulation of one generation of the simple genetic algorithm has helped illus-
trate both the detail and the power of the method.

Four differences separate genetic algorithms from more conventional opti-
mization technigues:

. Direct manipulation of a coding

Search from a population, not a single point

Search via sampling, a blind search

Search using stochastic operators, not deterministic rules

Lol i

Genetic algorithms manipulate decision or control variable representations
at the string level to exploit similarities among high-performance strings. Other
methods usually deal with functions and their control variables directly. Because

Problems 23

genetic algorithms operate at the coding level, they are difficult to fool even when
the function may be difficult for traditional schemes.

Genetic algorithms work from a population; many other methods work from
a single point. In this way, GAs find safety in numbers. By maintaining a population
of well-adapted sample points, the probability of reaching a false peak is reduced.

Genetic algorithms achieve much of their breadth by ignoring information
except that concerning payoff. Other methods rely heavily on such information,
and in problems where the necessary information is not available or difficult to
obtain, these other techniques break down. GAs remain general by exploiting
information available in any search problem. Genetic algorithms process similar-
ities in the underlying coding together with information ranking the structures
according to their survival capability in the current environment. By exploiting
such widely available information, GAs may be applied in virtually any problem.

The transition rules of genetic algorithms are stochastic; many other methods
have deterministic transition rules. A distinction exists, however, between the
randomized operators of genetic algorithms and other methods that are simple
random walks. Genetic algorithms use random choice to guide a highly exploi-
tative search. This may seem unusual, using chance to achieve directed results
(the best points), but nature is full of precedent.

We have started a more rigorous appraisal of genetic algorithm performance
through the concept of schemata or similarity templates. A schema is a string
over an extended alphabet, {0,1,*} where the 0 and the 1 retain their normal
meaning and the * is a wild card or don't care symbol. This notational device
greatly simplifies the analysis of the genetic algorithm method because it explic-
itly recognizes all the possible similarities in a population of strings. We have
discussed how building blocks—short, high-performance schemata—are com-
bined to form strings with expected higher performance. This occurs because
building blocks are sampled at near optimal rates and recombined via crossover.
Mutation has little effect on these building blocks: like an insurance policy, it
helps prevent the irrecoverable loss of potentially important genetic material.

The simple genetic algorithm studied in this chapter has much to recom-
mend it. In the next chapter, we will analyze its operation more carefully. Follow-
ing this, we will implement the simple GA in a short computer program and
examine some applications in practical problems,

B PROBLEMS

1.1. Consider a black box containing eight multiple-position switches, Switches
1 and 2 may be set in any of 16 positions. Switches 3, 4, and 5 are four-position
switches, and switches 6—8 have only two positions. Calculate the number of
unique switch settings possible for this black box device.

1.2. For the black box device of Problem 1.1, design a natural string coding that
uses eight positions, one position for each switch. Count the number of switch

24

Chapter 1 / A Gentle Introduction to Genetic Algorithms

settings represented by your coding and count the number of schemata or simi-
larity templates inherent in your coding.

1.3. For the black box device of Problem 1.1, design a minimal binary coding
for the eight switches and compare the number of schemata in this coding to a
coding for Problem 1.2.

1.4. Consider a binary string of length 11, and consider a schema, 1*********],
Under crossover with uniform crossover site selection, calculate a lower limit on
the probability of this schema surviving crossover. Calculate survival probabilities
under the same assumptions for the following schemata: *®***10*****

l]t:ut....-. c-.lllnuauu. uo-ultﬂutuul -lltotlntnn'

1.5. If the distance between the outermost alleles of a particular schema is called
its defining length b, derive an approximate expression for the survival proba-
bility of a particular schema of total length / and defining length & under the
operation of simple crossover.

1.6. Six strings have the following fitness function values: 5, 10, 15, 25, 50, 100.
Under roulette wheel selection, calculate the expected number of copies of each
string in the mating pool if a constant population size, n = 6, is maintained.

1.7. Instead of using roulette wheel selection during reproduction, suppose we
define a copy count for each string, ncount, as follows: ncount, = f,/f where f,
is the fitness of the ith string and f is the average fitness of the population. The
copy count is then used to generate the number of members of the mating pool
by giving the integer part of ncount, copies to the ith string and an additional
copy with probability equal to the fractional part of ncount,. For example, with
f, = 100 and f = 80, string / would receive an ncount, of 1.25, and thus would
receive one copy with probability 1.0 and another copy with probability 0.25.
Using the string fitness values in Problem 1.6, calculate the expected number of
copies for each of the six strings. Calculate the total number of strings expected
in the gene pool under this form of reproduction.

1.8. The form of reproduction discussed in Problem 1.7 is sometimes called
reproduction with expected number control. In a short essay, explain why this is
so. In what ways are roulette wheel selection and expected number control sim-
ilar? In what ways are they different?

1.9. Suppose the probability of a mutation at a single bit position is 0.1. Calculate
the probability of a 10-bit string surviving mutation without change. Calculate
the probability of a 20-bit string surviving mutation without change. Recalculate
the survival probabilities for both 10- and 20-bit strings when the mutation prob-
ability is 0.01.

1.10. Consider the strings and schemata of length 11. For the following schemata,
calculate the probability of surviving mutation if the probability of mutation is
0.1 at a single bit position: ***1*°0****, [******+25Q #25][***** *1000010*11.
Recalculate the survival probabilities for a mutation probability p,, = 0.01.

Computer Assignments 25

B COMPUTER ASSIGNMENTS

A. One of the primitive functions required in doing genetic algorithms on a
computer is the ability to generate pseudorandom numbers. The numbers are
pseudorandom because as von Neumann once said, “Anyone who considers ar-
ithmetical methods of producing random digits is, of course, in a state of sin." As
part of this assignment, go forth and sin some more. Use the random number
generator given in Appendix B to create a program where you generate 1000
random numbers between 0 and 1. Keep track of how many numbers are gen-
erated in each of the four quartiles, 0-0.25, 0.25-0.5, 0.5-0.75, 0.75-1.0, and
compare the actual counts with the expected number. Is the difference within
reasonable limits? How can you quantify whether the difference is reasonable?

B. Suppose you have 10 strings with the following probabilities of selection in
the next generation: 0.1, 0.2, 0.05, 0.15, 0.0, 0.11, 0.07, 0.04, 0.00, 0.12, 0.16. Given
that these are the only possible alternatives, calculate whether the probabilities
are consistent. Write a computer program that simulates roulette wheel selection
for these 10 strings. Spin the wheel 1000 times and keep track of the number of
selections for each string, comparing this number to the expected number of
selections.

C. Write a function that generates a pseudorandom integer between some spec-
ified lower limit and some specified upper limit. Test the program by generating
1000 numbers berween 3 and and 12. Keep track of the quantity of each number
selected and compare these figures to the expected quantities.

D. Create a procedure that receives two binary strings and a crossing site value,
performs simple crossover, and returns two offspring strings. Test the program
by crossing the following strings of length 10: 1011101011, 0000110100. Try
crossing site values of —3, 1, 6, and 20.

E. Create a function mutation that complements a particular bit value with
specified mutation probability p,,. Test the function by performing 1000 calls to
mutation using mutation probabilities p,, = 0.001, 0.01, 0.1. Compare the real-
ized number of mutations to the expected number.

F. Using the simple crossover operator of Assignment D, repeatedly apply the
crossover operator to strings contained within the following population of size
n=200and! = 5:

100 copies of 11100
100 copies of 00011

Perform crossover (p, = 1.0) for 50 generations without replacement under no
selection. Compare the initial and final distributions of strings. Also compare the
expected quantity of each string to the realized quantity in generation 50.

Genetic Algorithms
Revisited: Mathematical
Foundations

The broad brush of Chapter 1 painted an accurate, if somewhat crude, picture of
genetic algorithms and their mechanics and power. Perhaps these brush strokes
appeal to your own sense of human discovery and search. That somehow a reg-
ular though randomized procedure can achieve some of the breadth and intuitive
flair of human search seems almost too good to be true. That this discovery pro-
cedure should mirror the natural processes that created the species possessing
the procedure is a recursion of which Godel, Escher, or Bach (Hofstadter, 1979)
could each have been proud. Despite their intuitive appeal, and despite their
symmetry, it is crucial that we back these fuzzy feelings and speculations about
genetic algorithms using cold, mathematical facts.

Actually, we have already begun a more rigorous appraisal of GAs. Toward
the end of the last chapter, the fundamental concept of a schema or similarity
template was introduced. Quantitatively, we found that there are indeed a large
number of similarities to exploit in a population of strings. Intuitively, we saw
how genetic algorithms exploit in parallel the many similarities contained in
building blocks or short, high-performance schemata. In this chapter, we make
these observations more rigorous by doing several things. First, we count the
schemata represented within a population of strings and consider which grow
and which decay during any given generation. To do this, we consider the effect
of reproduction, crossover, and mutation on a particular schema. This analysis
leads to the fundamental theorem of genetic algorithms that quantifies these
growth and decay rates more precisely; it also points to the mathematical form

28

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

of this growth. This form is connected to an important and classical problem of
decision theory, the two-armed bandit problem (and its extension, the k-armed
bandit). The mathematical similarity between the optimal (minimal loss) solution
to the rwo-armed and k-armed bandit and the equation describing the number
of trials given to successive generations of schemata in the simple genetic algo-
rithm is striking. Counting the number of schemata that are usefully processed
by the simple genetic algorithm reveals tremendous leverage in the building
block processing. Finally, we consider an important question: How do we know
that combining building blocks leads to high performance in arbitrary problems?
The question sparks our consideration of some relatively new tools of genetic
algorithm analysis: schema transforms and the minimal deceptive problem.

WHO SHALL LIVE AND WHO SHALL DIE?
THE FUNDAMENTAL THEOREM

The operation of genetic algorithms is remarkably straightforward. After all, we
start with a random population of » strings, copy strings with some bias toward
the best, mate and partially swap substrings, and mutate an occasional bit value
for good measure. Even though genetic algorithms directly manipulate a popu-
lation of strings in this straightforward manner, in Chapter 1 we started to rec-
ognize that this explicit processing of strings really causes the implicit processing
of many schemata during each generation. To analyze the growth and decay of
the many schemata contained in a population, we need some simple notation to
add rigor to the discussion. We consider the operation of reproduction, crossover,
and mutation on the schemata contained in the population.

We consider strings, without loss of generality, to be constructed over the
binary alphabet V = {0, 1}. As a notational convenience, we refer to strings by
capital letters and individual characters by lowercase letters subscripted by their
position. For example, the seven-bit string A = 0111000 may be represented
symbolically as follows:

A = aa.a.a.a.a.0-.

Here each of the a, represents a single binary feature or detector (in accordance
with natural analogy, we sometimes call the a,'s genes), where each feature may
take on a value 1 or 0 (we sometimes call the @, values alleles). In the particular
string 0111000, @, is 0, @, is 1, a, is 1, etc. It is also possible to have strings where
detectors are not ordered sequentially as in string A For example a string A’
could have the following ordering:

L —
A = aaaaaaadas,

A later chapter explores the effect of extending the representation to allow fea-
tures to be located in a manner independent of their function. For now, assume
that a feature’s function may be determined by its position.

Meaningful genetic search requires a population of strings, and we consider

Who Shall Live and Who Shall Die? The Fundamental Theorem 29

a population of individual strings A, j = 1,2, ..., n, contained in the population
A() at time (or generation) £ where the boldface is used to denote a population,

Besides notation to describe populations, strings, bit positions, and alleles,
we need convenient notation to describe the schemata contained in individual
strings and populations. Let us consider a schema H taken from the three-letter
alphabet V4 = {0, 1, *}. As discussed in the previous chapter, the additional
symbol, the asterisk or star *, is a don't care or wild card symbol which matches
either a 0 or a 1 at a particular position. For example, consider the length 7
schema H = *1170*". Note that the string A = 0111000 discussed above is an
example of the schema H, because the string alleles @, match schema positions
h, at the fixed positions 2, 3, and 5.

From the results of the last chapter, recall that there are 3’ schemata or sim-
ilarity defined over a binary string of length £ In general, for alphabets of cardi-
nality & there are (B + 1) schemata. Furthermore, recall that in a string
population with 7 members there are at most n°2' schemata contained in a pop-
ulation because each string is itself a representative of 2’ schemata. These count-
ing arguments give us some feel for the magnitude of information being
processed by genetic algorithms; however, to really understand the important
building blocks of future solutions, we need to distinguish between different
types of schemata.

All schemata are not created equal. Some are more specific than others. For
example, the schema 011°1** is a more definite statement about important sim-
ilarity than the schema 0*****". Furthermore, certain schema span more of the
total string length than others. For example, the schema 1****1* spans a larger
portion of the string than the schema 1*1****. To quantify these ideas, we intro-
duce two schema properties: schema order and defining length.

The order of a schema H, denoted by o(#H), is simply the number of fixed
positions (in a binary alphabet, the number of 1's and 0's) present in the template,
In the examples above, the order of the schema 011*1** is 4 (symbolically,
o(011*1**) = 4), whereas the order of the schema 0*****" is 1.

The defining length of a schema H, denoted by 8(H), is the distance between
the first and last specific string position. For example, the schema 011*1** has
defining length & = 4 because the last specific position is 5 and the first specific
position is 1, and the distance between them is 8(H) = 5 — 1 = 4. In the other
example (the schema 0°*****), the defining length is particularly easy to calcu-
late. Since there is only a single fixed position, the first and last specific positions
are the same, and the defining length & = 0.

Schemata and their properties are interesting notational devices for rigor-
ously discussing and classifying string similarities. More than this, they provide
the basic means for analyzing the net effect of reproduction and genetic operators
on building blocks contained within the population. Let us consider the individ-
ual and combined effect of reproduction, crossover, and mutation on schemata
contained within a population of strings.

The effect of reproduction on the expected number of schemata in the pop-
ulation is particularly easy to determine. Suppose at a given time step f there are

30

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

m examples of a particular schema H contained within the population A(t) where
we write m = m(H,t) (there are possibly different quantities of different sche-
mata H at different times). During reproduction, a string is copied according to
its fitness, or more precisely a string A, gets selected with probability p, = f/%f,
After picking a nonoverlapping population of size n with replacement from the
population A(f), we expect to have m(H, ¢ + 1) representatives of the schema
H in the population at time ¢ + 1 as given by the equation m(H, t + 1) =
m(H, t)yn fUH)/Lf, where f(H) is the average fitness of the strings representing
schema M at time £ If we recognize that the average fitness of the entire popu-
lation may be written as f = Xf/n then we may rewrite the reproductive schema
growth equation as follows:

AH)

Hit+1)= m(H t)y—.
m m(7

In words, a particular schema grows as the ratio of the average fitness of the
schema to the average fitness of the population. Put another way, schemata with
fitness values above the population average will receive an increasing number of
samples in the next generation, while schemata with fitness values below the
population average will receive a decreasing number of samples. It is interesting
to observe that this expected behavior is carried out with every schema H con-
tained in a particular population A in parallel. In other words, all the schemata in
a population grow or decay according to their schema averages under the oper-
ation of reproduction alone. In a moment, we examine why this might be a good
thing to do. For the time being, simply note that many things go on in parallel
with simple operations on the n strings in the population.

The effect of reproduction on the number of schemata is qualitatively clear;
above-average schemata grow and below-average schemata die off. Can we learn
anything else about the mathematical form of this growth (decay) from the
schema difference equation? Suppose we assume that a particular schema H re-
mains above average an amount ¢f with ¢ a constant. Under this assumption we
can rewrite the schema difference equation as follows:

m(H t+ 1) = m(H,r)U—?Q =(1+c) m(H 1)

Starting at 1 = 0 and assuming a stationary value of ¢ we obtain the equation
m(H, t) = m(H, 0)-(1 + c)".

Business-oriented readers will recognize this equation as the compound interest
equation, and mathematically oriented readers will recognize a geometric pro-
gression or the discrete analog of an exponential form. The effect of reproduction
is now quantitatively clear; reproduction allocates exponentially increasing (de-
creasing) numbers of trials to above- (below-) average schemata. We will connect
this rate of schemata allocation to the multiarmed bandit problem, but for right
now we will investigate how crossover and mutation affect this allocation of trials.

Wheo Shall Live and Who Shall Die? The Fundamental Theorem N

To some extent it is curious that reproduction can allocate exponentially
increasing and decreasing numbers of schemata to future generations in parallel;
many, many different schemata are sampled in parallel according to the same rule
through the use of n simple reproduction operations. On the other hand, repro-
duction alone does nothing to promote exploration of new regions of the search
space, since no new points are searched; if we only copy old structures without
change, then how will we ever try anything new? This is where crossover steps
in. Crossover is a structured yet randomized information exchange between
strings. Crossover creates new structures with a minimum of disruption to the
allocation strategy dictated by reproduction alone. This results in exponentially
increasing (or decreasing) proportions of schemata in a population on many of
the schemata contained in the population.

To see which schemata are affected by crossover and which are not, consider
a particular string of length / = 7 and two representative schemata within that
string:

A =0111000
Hizl-lilliu
H,=*"»*= 10"«

Clearly the two schemata H, and H, are represented in the string A, but to see
the effect of crossover on the schemata, we first recall that simple crossover pro-
ceeds with the random selection of a mate, the random selection of a crossover
site, and the exchange of substrings from the beginning of the string to the cross-
over site inclusively with the corresponding substring of the chosen mate. Sup-
pose string A has been chosen for mating and crossover. In this string of length
7, suppose we roll a single die to choose the crossing site (there are six sites in
a string of length 7). Further suppose that the die turns up a 3, meaning that the
cross cut will take place berween positions 3 and 4. The effect of this cross on
our rwo schemata 4, and H, can be seen easily in the following example, where
the crossing site has been marked with the separator symbol | :

A =011|1000
H]=q_|_u|nun0
H,=%"%=2|10%"*

Unless string A’s mate is identical to A at the fixed positions of the schema (a
possibility that we conservatively ignore), the schema H, will be destroyed be-
cause the 1 at position 2 and the 0 at position 7 will be placed in different off-
spring (they are on opposite sides of the separator symbol marking the cross
point, or cut point). It is equally clear that with the same cut point (between bits
3 and 4), schema H, will survive because the 1 at position 4 and the 0 at position
5 will be carried intact to a single offspring. Although we have used a specific cut
point for illustration, it is clear that schema H, is less likely to survive crossover
than schema H, because on average the cut point is more likely to fall berween
the extreme fixed positions. To quantify this observation, we note that schema
H, has a defining length of 5. If the crossover site is selected uniformly at random

32

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

amongthe ! — 1 = 7 — 1 = 6 possible sites, then clearly schema H, is destroyed
with probability p, = 8(H,Y({ — 1) = 5/6 (it survives with probability p, =
1 — p, = 1/6). Similarly, the schema /; has defining length &(/,) = 1, and it is
destroyed during that one event in six where the cut site is selected to occur
between positions 4 and 5 such that p, = 1/6 or the survival probability is p, =
1 = p, = 5/6.

More generally, we see that a lower bound on crossover survival probability
P, can be calculated for any schema. Because a schema survives when the cross
site falls outside the defining length, the survival probability under simple cross-
overis p, = 1 = 8(HY(1 — 1), since the schema is likely to be disrupted when-
ever a site within the defining length is selected from the / — 1 possible sites. If
crossover is itself performed by random choice, say with probability p, at a par-
ticular mating, the survival probability may be given by the expression

H

p:=1-p - !-B(__)I-
which reduces to the earlier expression when p, = 1.0,

The combined effect of reproduction and crossover may now be considered.
As when we considered reproduction alone, we are interested in calculating the
number of a particular schema H expected in the next generation. Assuming
independence of the reproduction and crossover operations, we obtain the
estimate:

m(H, t+ 1)= m(H, 1) J"I—H?Iil - P M]

f -1
Comparing this to the previous expression for reproduction alone, the combined
effect of crossover and reproduction is obtained by multiplying the expected
number of schemata for reproduction alone by the survival probability under
crossover p.. Once again the effect of the operations is clear. Schema A grows or
decays depending upon a multiplication factor. With both crossover and repro-
duction, that factor depends on two things: whether the schema is above or be-
low the population average and whether the schema has relatively short or long
defining length. Clearly, those schemata with both above-average observed per-
formance and short defining lengths are going to be sampled at exponentially
increasing rates.

The last operator to consider is mutation. Using our previous definition, mu-
tation is the random alteration of a single position with probability p,,. In order
for a schema H to survive, all of the specified positions must themselves survive.
Therefore, since a single allele survives with probability (1 — p,,), and since each
of the mutations is statistically independent, a particular schema survives when
each of the o(H) fixed positions within the schema survives. Multiplying the
survival probability (1 — p,,) by itself o(/) times, we obtain the probability of
surviving mutation, (1 — p,,)" For small values of p,, (p,, << 1), the schema
survival probability may be approximated by the expression 1 — o(H)p,,. We

Schema Processing ot Work: An Example by Hand Revisited 33

therefore conclude that a particular schema H receives an expected number of
copies in the next generation under reproduction, crossover, and mutation as
given by the following equation (ignoring small cross-product terms).

ﬂ!f}[] .

m(H, t+ 1)=m(H, t) — e o(H)p...]-

f
The addition of mutation changes our previous conclusions little. Short, low-
order, above-average schemata receive exponentially increasing trials in subse-
quent generations. This conclusion is important, so important that we give it a
special name: the Schema Theorem, or the Fundamental Theorem of Genetic Al
gorithms. Although the calculations that led us to prove the schema theorem
were not too demanding, the theorem's implications are far reaching and subtle.
To see this, we examine the effect of the three-operator genetic algorithm on
schemata in a population through another visit to the hand-calculated GA of
Chapter 1.

SCHEMA PROCESSING AT WORK: AN EXAMPLE
BY HAND REVISITED

Chapter 1 demonstrated the mechanics of the simple GA through a hand calcu-
lation of a single generation. Let us return to that example, this time observing
how the GA processes schemata—not individual strings—within the population.
The hand calculation of Chapter 1 is reproduced in Table 2.1. In addition to the
information presented earlier, we also keep a running count of three particular
schemata, which we call H,, H,, and H,, where H, = 1**** H, = *10**, and
H, = 1**°0.

Observe the effect of reproduction, crossover, and mutation on the first
schema, H,. During the reproduction phase, the strings are copied probabilisti-
cally according to their fitness values. Looking at the first column of the table, we
notice that strings 2 and 4 are both representatives of the schema 1****. After
reproduction, we note that three copies of the schema have been produced
(strings 2, 3, 4 in the mating pool column). Does this number correspond with
the value predicted by the schema theorem? From the schema theorem we ex-
pect to have m-f{H)/f copies. Calculating the schema average f(H,), we obtain
(576 + 361)2 = 468.5. Dividing this by the population average f = 293 and
multiplying by the number of /, schemata at time ¢ m(H,, t) = 2, we obtain the
expected number of H, schemata at time ¢+ + 1, m(H,t + 1) = 2:468.5/293 =
3.20. Comparing this to the actual number of schemata (three), we see that we
have the correct number of copies. Taking this one step further, we realize that
crossover cannot have any further effect on this schema because a defining length
o(H,) = 0 prevents disruption of the single bit. Furthermore, with the mutation
rate set at p,, = 0.001 we expect to have m'p,, = 3:0.001 = 0.003 or no bits
changed within the three schema copies in the three strings. As a result, we ob-

34

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

TABLE 2.1 GA Processing of Schemata—Hand Calculations

String Processing

s Actual
Initial Expected Count
Population X Value pselect, count from
String Randomly Unsigned fix) Ji L Roulette
No. Generated Integer X ir f Wheel
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 G4 0.06 0.22 0
! 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4.0
Average 293 025 1.00 1.0
Max 576 0.49 1.97 2.0
Schema Processing
Before Reproduction
String Schema Average
Representatives Fitness f{H)
: 1 % % = = 2'4 469
H, L0 L 23 320
1% % % 2 576

serve that for schema H,, we do obtain the expected exponentially increasing
number of schemata as predicted by the schema theorem.

So far, so good; but schema H, with its single fixed bit seems like something
of a special case. What about the propagation of important similarities with longer
defining lengths? For example consider the propagation of the schema H, =
*10** and the schema H, = 1***0. Following reproduction and prior to crossover
the replication of schemata is correct. The case of H, starts with two examples
in the initial population and ends with two copies following reproduction. This
agrees with the expected number of copies, m(H,) = 2-320/293 = 2.18, where
320 is the schema average and 293 is the population average fitness. The case of
H, starts with a single example (string 2) and ends with two copies following
reproduction (strings 2 and 3 in the string copies column). This agrees with the
expected number of copies m(H;) = 1-576/293 = 1.97, where 576 is the sche-
ma’s average fitness and 293 is the population’s average fitness. The circum-
stances following crossover are a good bit different. Notice that for the short
schema, schema H,, the two copies are maintained even though crossover has

Schema Processing at Work: An Exomple by Hand Revisited 35

TABLE 2.1 (Continued)

String Processing

Mating Pool after Mate Crossover Site
Reproduction Randomly Randomly New e fix)
(Cross Site Shown) Sclected Selected Population Value . o
0110|1 2 4 01100 12 144
l1100]|0 1 4 11001 25 625
111|000 4 2 11011 27 729
10|/|011 3 2 10000 16 256
Sum 1754
Average 439
Max 729
Schema Processing
After Reproduction After All Operators
String String
Expected Actual Represen- Expected Actual Represen-
Count Count tatives Count Count tatives
320 3 234 3.20 3 2,34
218 2 23 1.64 2 23
1.97 2 23 0.0 1 4

occurred. Because the defining length is short we expect crossover to interrupt
the process only one time in four (/ — 1 = 5 — 1 = 4). As a result, the schema
H, survives with high probability. The actual expected number of H, schemata is
thus m(H,, t+1) = 2.18:0.75 = 1.64, and this compares well with the actual
count of two schemata. H, is a schema of a different color. Because of the long
defining length (8(H,) = 4), crossover usually destroys this schema.

The hand calculation has confirmed the theory developed earlier in this
chapter. Short, low-order schemata are given exponentially increasing or decreas-
ing numbers of samples depending on a schema's average fitness. In a moment
we will estimate the number of schemata that are processed in this way, but
before we do, we must ask and answer a pressing question. Why should we give
an exponentially increasing number of trials to the observed best schemata? In
other words, why is this particular allocation strategy a good road to follow? The
answer lies along what at first may seem like a detour, following a gambler among
the slot machines of Las Vegas.

36 Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

THE TWO-ARMED AND K-ARMED BANDIT PROBLEM

The effect of reproduction, crossover, and mutation are now both quantitatively
and qualitatively clear. Schemata of short defining length, low order, and above
average fitness (building blocks) receive exponentially increasing trials in future
generations. This is a fact, beyond all question. Yet despite careful proof of this
point, at least one nagging question remains: Why is this a good thing to do? More
to the point, why should exponentially increasing samples be given to the ob-
served best building blocks? This question leads to an important problem of sta-
tistical decision theory, the two-armed bandit problem and its extension, the k-
armed bandit problem. Although this seems like a detour from our main concern
(after all, we are trying to understand genetic algorithms, not minimize our gam-
bling losses), we shall soon see that the optimal solution to the bandit problem
is very similar in form to the exponential allocation of trials from our tripartite
GA.

Suppose we have a two-armed slot machine, as depicted in Fig. 2.1 with two
arms named LEFT and RIGHT. Furthermore, let's assume we know that one of the
arms pays an award p, with variance of and the other arm pays an award ., with
variance of where p, = p,. Which arm should we play? Clearly, we would like to
play the arm that pays off more frequently (the arm with payoff w,), but therein
lies the rub. Since we don't know beforehand which arm is associated with the

FIGURE 2.1 The two-armed bandit problem poses a dilemma: how do we
search for the right answer (exploration) at the same time we use that informa-

tion (exploitation)?

The Two-Armed and K-Armed Bandit Problem 37

higher expected reward, we are faced with an interesting dilemma. Not only must
we make a decision (more precisely, a sequence of decisions) about which arm
to play, but we must at the same time collect information about which is the
better arm. This trade-off between the exploration for knowledge and the ex-
ploitation of that knowledge is a recurrent and fundamentally important theme
in adaptive systems theory. How we address this dilemma will say a lot about the
ultimate success of our methods.

One way to approach the trade-off is to separate exploration from exploita-
tion by first performing a single experiment and thereafter making a single irre-
versible decision that depends upon the outcome of the experiment, This is one
approach of traditional decision theory that we can describe rigorously as fol-
lows. Suppose we have a total of NV trials to allocate among the two arms, We first
allocate an equal number of trials n (2n < N) trials to each of the two arms
during the experimental phase. After the experiment, we allocate the remaining
N = 2n trials to the arm with best observed payoff. Assuming we know N, w,, p,,
a,, and o,, we can calculate the expected loss (De Jong, 1975):

LNn) = | = ol - [(N = m)g(n) + n(1 = g(n))),

where g(n) is the probability that the worst arm is the observed best arm after
n trials have been attempted on each machine. This probability is well approxi-
mated by the tail of the normal distribution:

i D - 7Y

g(n) = Ve = ° where x = ,—UI_, g V.

From these equations we can see that two sources of loss are associated with
the procedure. The first loss is a result of issuing » trials to the wrong arm during
the experiment. The second is a result of choosing the arm associated with the
lower payoff (1,) even after performing the experiment. We cannot be absolutely
certain at the end of the experiment that we will pick the right arm, so we do
expect occasionally to pick the wrong arm and incur a loss on the remaining
N — 2n trials during the exploration phase. We may solve for the optimal exper-
iment size n* by taking the derivative of the loss equation and setting it to zero.
Figure 2.2 shows how the optimal experiment n* size varies with the total num-
ber of trials N and ¢, the ratio of signal difference to noise, where ¢ = (p, — p,)/
(o? + a?)*s,

This simple procedure is easy to analyze, but there are no doubt better ways,
perhaps optimal ways, to allocate the trials to the better arm. Holland (1975 has
performed calculations that show how trials should be allocated between the two
arms to minimize expected losses. This results in the allocation of #* trials to the
worse arm and N — n* trials to the better arm where n* is given by the following
equation:

—_— here b = o/ = !
Bﬂl'b"ll'l. N!:| w CF] (P"l l""z]

=]

38

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

FIGURE 2.2 The modified total number of trials (c’NV) grows at a greater than
exponential function of the modified optimal experiment size (c'n*) in the one-
shot, decision-theory approach to the two-armed bandit problem.

Turning the equation around, we realize that the number of trials given to the
observed better arm is given by the equation:

N — n* = N = \/8nb'ln N*-&"*",

In other words, to allocate trials optimally (in the sense of minimal expected
loss), we should give slightly more than exponentially increasing trials to the
observed best arm. Unfortunately, this strategy is unrealizable, as it requires
knowledge of outcomes before they occur. Nonetheless, it forms an important
bound on performance that a realizable strategy should try to approach. Certainly
many strategies can approach this ideal. The experimental approach analyzed ear-
lier showed how exponentially fewer trials were given to the worse arm as the
number of trials increased. Another method that comes even closer to the ideal
trial allocation is the three-operator genetic algorithm discussed earlier. The
schema theorem guarantees giving at least an exponentially increasing number
of trials to the observed best building blocks. In this way the genetic algorithm
is a realizable yet near optimal procedure (Holland, 1973a, 1975) for searching
among alternative solutions.

With a genetic algorithm we are no longer solving a simple two-armed bandit
problem; in the usual genetic algorithm we consider the simultaneous solution
of many multiarmed bandits. To make this point more forcefully, we first consider

The Two-Armed and K-Armed Bandit Problem 39

the form of the solution to a single k-armed bandit and then demonstrate that
the usual genetic algorithm may be thought of as the composition of many such
k-armed bandits.

The form of the bounding k-armed bandit solution was also discovered by
Holland (1973a). The minimal expected loss solution to the allocation of trials
to & competing arms is similar to the two-armed solution as it dictates that greater
than exponentially increasing numbers of trials be given to the observed best of
the & arms. This result is not surprising, but it does connect nicely to our notions
of schema processing if we consider a set of competing schemata as a particular
k-armed bandit. To see this connection, we define this notion of a competing set
of schemata, and then count the number and size of the k-armed bandit problems
being solved within a genetic algorithm of given string length.

Two schemata A and B with individual positions a, and b, are competing if
at all positions i = 1,2, ... leithera, = b, = *ora,# * b, # * a, # b, for at
least one { value. For example, consider the set of eight schemata that compete
at locations 2, 3, and 5 in the following strings of length 7:

* 00 %0 % =
Oi

*
= e e = O O O
= = O 0O = =
-
Lol = I T = I T - R
-
-

There are eight competing schemata over the three positions 2, 3, and 5
because any of the three positions may take on eithera 1 ora 0 (2% = 8).

We can start to see the connection to the k-armed bandit problem in our list
of eight competing schemata. Since these schemata are defined over the same
positions, they compete with one another for precious population slots. In order
to allocate the population slots properly, we need to allocate exponentially in-
creasing numbers to the observed best schemata just as we give exponentially
increasing trials to the observed best arm in the k-armed bandit. One of the dif-
ferences between our situation in a genetic algorithm and the vanilla flavored &-
armed bandit is that we have a number of problems proceeding in parallel. For
example, with three positions fixed over a string of length 7 there are (]) = 35
of the (2* = 8) eight-armed bandit problems. In general, for schemata of order §

over strings of length [there are C) different &-armed bandit problems, where

k, = 2. Not all of the i(:: = 2" problems are played out equally well because

crossover has a tendency to disrupt those bandits with long defining lengths as
discussed earlier. In the next section, we count the number of schemata that are
usefully processed by the genetic algorithm.

40 Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

HOW MANY SCHEMATA ARE PROCESSED USEFULLY?

Our counting arguments thus far have indicated that we have somewhere be-
tween 2’ and n-2' schemata being processed in a string population with length /
and size n. As we know, not all of these are processed with high probability be-
cause crossover destroys those with relatively long defining lengths. In this sec-
tion we compute a lower bound on those schemata that are processed in a useful
manner—those that are sampled at the desirable exponentially increasing rate,

The most widely quoted counting of effective schemata processing is Hol-
land's well known, but poorly understood, O(n*) estimate (Goldberg, 1985d).
Simply stated, this estimate means that despite the processing of only » structures
each generation, a genetic algorithm processes something like n* schemata. This
result is so important, Holland has given it a special name, implicit parallelism.
Even though each generation we perform computation proportional to the size
of the population, we get useful processing of something like n* schemata in
parallel with no special bookkeeping or memory other than the population itself.
Let us rederive this estimate to understand its underlying assumptions and ex-
amine the source of this computational leverage.

Consider a population of n binary strings of length [We consider only sche-
mata that survive with a probability greater than p, a constant. As a result, assum-
ing the operation of simple crossover and a small mutation rate, we admit only
those schemata with an error rate £ = 1 — p. This leads us to consider only
those schemata with length I, < e(/ — 1) + 1.

With a particular schema length, we can estimate a lower bound on the num-
ber of unigque schemata processed by an initially random population of strings.
To do this, we first count the number of schemata of length /, or less. We then
multiply this by an appropriate population size, chosen 5o we expect, on average,
no more than one of each schema of length /2. Suppose we wish to count the
schemata of length /, in the following string of length / = 10:

1011100010
To do this we calculate the number of schemata in the first cell of 5,
lo111j00010

50 the last bit in the cell is fixed. Thar is, we want all
schemata of the form

REFE I|Fo> s

where the stars * are don't care symbols and the percent signs % take on either
the fixed value (the 1 or 0 at that position) or a don't care. Clearly there are
2t~ 1 of these schemata because /, — 1 = 4 positions can be fixed or take on
the don't care. To count the total number of these, we simply slide the template
of 5 along one space at a time:

1l01110[/0010

The Building Block Hypothesis 41

We perform this trick a total of [— [, + 1 times and we can estimate the total
number of schema of length /, or less as 2'~" - ({ — [+ 1). This count is the
number of such schemata in this particular string. To overestimate the number
of such schemata in the whole population, we could simply multiply by the pop-
ulation size n and obtain the count n°2'%"'" - ({ — [+ 1). This obviously over-
estimates the correct count because surely there will be duplicates of low-order
schemata in large populations. To refine the estimate, we pick a population size
n = 242 By choosing in this manner, we expect to have one or fewer of all
schemata of order [/2 or more. Recognizing that the number of schema is binom-
ially distributed, we conclude that half are of higher order than [/2 and half are
of smaller order. If we count only the higher order ones, we estimate a lower
bound on the number of schemata as follows:

n,=n(l — I, + 1)20°2

This differs from the previous overestimate by a factor of 1/2. Furthermore, the
restriction of the population size to the particular value 2%° results in the
exXpression:

(- L+ Dn
e,

n,

Since n, = Cn*, we conclude that the number of schemata is proportional to the
cube of the population size and is thus of order n*, O(n*).

Thus we see that despite the disruption of long, high-order schemata by
crossover and mutation, genetic algorithms inherently process a large quantity of
schemata while processing a relatively small quantity of strings.

THE BUILDING BLOCK HYPOTHESIS

The picture of genetic algorithms' performance is much clearer with the per-
spective afforded by schemata. Short, low-order, and highly fit schemata are sam-
pled, recombined, and resampled to form strings of potentially higher fitness. In
a way, by working with these particular schemata (the building blocks), we have
reduced the complexity of our problem; instead of building high-performance
strings by trying every conceivable combination, we construct better and better
strings from the best partial solutions of past samplings.

Because highly fit schemata of low defining length and low order play such
an important role in the action of genetic algorithms, we have already given them
a special name: building blocks. Just as a child creates magnificent fortresses
through the arrangement of simple blocks of wood, so does a genetic algorithm
seek near optimal performance through the juxtaposition of short, low-order,
high-performance schemata, or building blocks.

There is, however, one catch. Repeatedly Chapter 1 claimed that notions
combine to form better ideas. Just now, it was claimed that building blocks com-

42

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

bine to form better strings. While these claims seem perfectly reasonable, how
do we know whether they hold true or not?

Certainly there is a growing body of empirical evidence to support these
claims in a variety of problem classes. Starting two decades ago with two pioneer-
ing dissertations (Bagley, 1967; and Rosenberg, 1967) and continuing through
the many genetic algorithm applications demonstrated at recent conferences de-
voted to genetic algorithms (Grefenstette, 19852, 1987a), the building block hy-
pothesis has held up in many different problem domains. Smooth, unimodal
problems, noisy multimodal problems, and combinatorial optimization problems
have all been attacked successfully using virtually the same reproduction-cross-
over-mutation GA. While limited empirical evidence does no theory prove, it
does suggest that genetic algorithms are appropriate for many of the types of
problems we normally encounter.

More recently, Bethke (1981) has shed some light on this topic. Using Walsh
functions and a clever transformation of schemata, he has devised an efficient,
analytical method for determining schema average fitness values using Walsh
coefficients. This in turn permits us to identify whether, given a particular func-
tion and coding, building blocks combine to form optima or near optima. Holland
(1987b) has extended Bethke's computation to the analysis of schema averages
when the population is not uniformly distributed.

Bethke's and Holland’s Walsh-schema transform work is beyond the scope of
this discussion, although the interested reader should consult Appendix E, which
briefly discusses some important results. Nonetheless, the concepts behind these
discoveries are sufficiently important that we must try to understand the regular-
ity implied in building block processing, at least from an intuitive, graphic view-
point. To do this, let us return to the five-bit coding example we started in
Chapter 1. Recall, in that problem we were trying to maximize the function
flx) = x* where x was coded as a five-bit unsigned integer. In this problem, what
do the building blocks look like and how do they lead to better solutions when
they are mixed with one another? Consider a simple schema, H, = 1****. What
does this one-fixed-bit schema look like? The answer is shown in Fig. 2.3 as the
shaded region of the domain. Apparently, a schema with the high-order bit set
covers the upper half of the domain of interest. Similarly, the schema H, = 0****
covers the lower half. Other one-bit examples prove illuminating, for example
the schema H, = ****1 shown in Fig. 2.4. This schema covers the half domain
that decodes to an odd number (00001 = 1,00011 = 3, 00101 = 5, etc.). The
schema H, = ***0* also covers half the domain, but in the manner shown in Fig,
2.5. It scems that a one-bit schema covers half the domain, but the frequency of
oscillation depends on the position of the fixed bit.

Higher order building blocks are certainly of interest. Consider the schema
H = 107** as depicted in Fig. 2.6. This schema covers the lower quarter of the
upper half domain. Other two-bit schemata may be sketched similarly, such as
the schema H, = **1*1 as shown in Fig. 2.7. Like schema H., it too covers a
quarter domain (why is this?), but in a more broken-up fashion. For readers fa-
miliar with Fourier series, the periodicity of the different schemata is suggestive.

The Building Block Hypothesis

0.9 -

0.8

0.7 +

0.6 +

0.5

(Thousands)

0.4

0.3 4

0.2 o

FIGURE 2.3 Sketch of schema 1**** overlaying the function flx) = a7,

0.8 - : - 1t {/
0.7 | e
0.6 - ; : "
05 - L H IV

(Thousands)
Y

| ail
o 1 o 1 T
0 4 8 12 16 20 24 28 az

FIGURE 2.4 Sketch of schema ****1.

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

0984

L ;:.-' '::jj /
o4 - : / .
034 - Pd
0.2 — . ///
0 4 o : -1

(Thousands)

| et

o 4 a 12 16 20 24 28 32

FIGURE 2.5 Sketch of schema ***0".

0.8

0.8 -

0.7 -

0.6

0.5 -

(Thousands)

0.4 4

0.3 4

0.2 4

FIGURE 2.6 sketch of schema 10***.

The Building Block Hypothesis 45

/

0.B +
0.7 5

0.6 -

0.5 -

(Thousands)

28 32

FIGURE 2.7 Sketch of schema **1*1.

In fact, it is this periodicity that permits the Walsh function analysis. Just as har-
monic analysis determines physical properties through an examination of the rel-
ative magnitudes of Fourier coefficients, so does Walsh function analysis
determine the expected static performance of a genetic algorithm through an
analysis of the relative magnitudes of Walsh coefficients.

Although these transform methods are powerful mathematical tools for ge-
netic algorithm analysis in specific cases, generalization of these results to arbi-
trary codings and functions has proved difficult. Bethke has generated a number
of test cases that are provably misleading for the simple three-operator genetic
algorithm (we call these coding-function combinations GA-deceptive). These re-
sults suggest that functions and codings that are GA-deceptive tend to contain
isolated optima: the best points tend to be surrounded by the worst. Practically
speaking, many of the functions encountered in the real world do not have this
needle-in-the-haystack quality; there is usually some regularity in the function-
coding combination—much like the regularity of one or more schemata—that
may be exploited by the recombination of building blocks. Furthermore, we can
argue that finding a needle in a haystack is going to be difficult regardless of the
search technique adopted. Nevertheless, it is important to keep in mind that the
simple genetic algorithm depends upon the recombination of building blocks to
seek the best points. If the building blocks are misleading due to the coding used
or the function itself, the problem may require long waiting times to arrive at
near optimal solutions.

46 Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

ANOTHER PERSPECTIVE: THE MINIMAL DECEPTIVE PROBLEM

Schema visualization and Walsh-schema transforms provide insight into the work-
ings of genetic algorithms. From a practical standpoint, however, these tech-
niques are at least as computationally cumbersome as an enumerative search of
the discrete problem space. As a result, they are not widely used to analyze prac-
tical problems in genetic search. Nonetheless, we still need to understand better
what makes a problem difficult for a simple GA. To investigate this matter further,
let's construct the simplest problem that should cause a GA to diverge from the
global optimum (Goldberg, 1987b). To do this, we want to violate the building
block hypothesis in the extreme. Put another way, we would like to have short,
low-order building blocks lead to incorrect (suboptimal) longer, higher order
building blocks. The smallest problem where we can have such deception is a
two-bit problem. In this section, we briefly develop this minimal deceptive prob-
lem (MDP). Despite our best efforts to fool a simple GA, it is somewhat surprising
that this GA-deceptive problem is not usually GA-hard (does not usually diverge
from the global optimum).

Suppose we have a set of four order-2 schemata over two defining positions,
cach schema associated with a fitness value as follows:

. % * 0 ¥ ¥ #® # 0 * rm
% # 8 0 ® & ¥ ® & 1 * rn 1
8 % %] % & & = & U - ‘!110
% #] % % % & &] @ f‘l F

[~ &(H) —|

The fitness values are schema averages, assumed to be constant with no variance
(this last restriction may be lifted without changing our conclusions as we only
consider expected performance). To start, let's assume that f,, is the global
optimum:

Ju=Jw fu =S S0 =S

Since the problem is invariant to rotation or reflection in Hamming two-space,
the assumption of a particular global optimum is irrelevant to the generality of
our conclusions,

Next, we introduce the element of deception necessary to make this a tough
problem for a simple genetic algorithm. To do this, we want a problem where
one or both of the suboptimal, order-1 schemata are better than the optimal,
order-1 schemata. Mathematically, we want one or both of the following condi-
tions to hold:

(0*) = f(1*);
f(*0) = f(*1).

In these expressions we have dropped consideration of all alleles other than the
two defining positions, and the fitness expression implies an average over all

Anocther Perspective: The Minimal Deceptive Problem 47

strings contained within the specified similarity subset. Thus we would like the
following rwo expressions to hold:

f(00) + f(01) _ f10) + f(11)

2 2
f(00) + f10) _ flO1) + f11)
2 2 ;

Unfortunately, both expressions cannot hold simultaneously in the two-problem
(if they do, point 11 cannot be the global optimum), and without loss of gener-
ality we assume that the first expression is true. Thus, the deceptive two-problem
is specified by the globality condition (f, is the best) and one deception condi-
tion (we choose f{0*) = f{1%)).

To put the problem into closer perspective, we normalize all fitness values
with respect to the fitness of the complement of the global optimum as follows:

VTR T

fl‘lﬂ. J'rlllT J(IIJ

We may rewrite the globality condition in normalized form:
r>c; r>1; r>c'.

We may also rewrite the deception condition in normalized form:
r<l+c-c.

From these conditions, we may conclude a number of interesting facts:
¢ <1; c<ec

From these, we recognize that there are two types of deceptive two-problem:
Type I fo, > fwa (c>1)
Typell: f,=f, (c=1)

Figures 2.8 and 2.9 are representative sketches of these problems where the fit-
ness is graphed as a function of rwo boolean variables. Both cases are deceptive,
and it may be shown that neither case can be expressed as a linear combination
of the individual allele values: neither case can be expressed in the form:

fxx,) = b+ iﬁm-

In the biologist's terms, we have an epistatic problem. Since it similarly may be
proved that no one-bit problem can be deceptive, the deceptive, two-problem is
the smallest possible deceptive problem: it is ¢he minimal, deceptive problem
(MDP). With the MDP defined, we now turn toward a complete schema analysis
of its behavior.

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

10

FIGURE 2.8 Sketch of Type I, minimal deceptive problem (MDP) f;, = f.

FIGURE 2.9 Sketch of Type II, minimal deceptive problem (MDP) f,, = f,..

Another Perspective: The Minimal Deceptive Problem 49

An Extended Schema Analysis of the Two-Problem

S0 far we have constructed a generalized two-bit problem that seems capable of
misleading a genetic algorithm when the two defining bits of the problem be-
come widely separated on the string. Judging from the schema theorem, we ex-
pect to have difficulty when the factor

aofe s
7 [' "’fr—r]

is less than or equal to 1 (assuming that p,, = 0). A more careful analysis requires
us to consider the details of crossover more closely.

In an earlier section, we saw how the usual calculation of the expected num-
ber of schemata in the next generation is a lower bound. This is so because the
derivation contains no source terms (one schema's loss is another's gain) and it
assumes that we lose the schema whenever a cross occurs between the schema's
outermost defining bits. In the two-problem this latter assumption is overly con-
servative, because the mating and crossing of noncomplementary pairs conserve
the genetic material of the parents. For example, 00 crossed with 01 yields 01
and 00. The only time a loss of genetic material occurs is when complements
mate and cross. In these cases, a 00 mated and crossed with a 11 yields the pair
01 and 10, and likewise, a 01 mated and crossed with a 10 yields the pair 11 and
00. The full crossover yield table is shown in Table 2.2 where an § is used to
indicate that the offspring are the same as their parents.

In the yield table we see how complements lose material, although we also
see how this loss shows up as a gain to the other complementary pair of schemata.
Using this information, it is possible to write more accurate difference relation-
ships for the expected proportion P of each of the four competing schemata. To
do this we must account for the correct expected loss and gain of schemata due

TABLE 2.2 Crossover Yield Table in Two-Bit Problem

X 00 o1 10 1

o1
00 s s S "

00
o1 s s o s
00

10 s = s s
1 al s s S

10

50

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

to crossover. Assuming proportionate reproduction, simple crossover, and ran-
dom mating of the products of reproduction, we obtain the following autono-
mous, nonlinear, difference equations-

Pt = j} l—p:’:';“ _ +p:‘}“ﬁ"“m.ﬁn;
Pyt = P, Lo il - o2, _ +pr"}{”m.-.
it = P il - p:’%ﬁn: + pfol poms
Pt = L :1 : p:‘%m: + e p,

In these equations, the superscripts are time indexes, and the subscript binary
numbers are schema indexes. The variable fis simply the current (generation)
population average fitness, which may be evaluated as follows;

J = Piafos + Porfo, + Pigfio + Piofy1.
The parameter p’, is the probability of having a cross that falls between the two

defining bits of the schema:

. _ . B(H)
pi= b

Together, these equations predict the expected proportions of the four sche-
mata in the next generation. With specified initial proportions, we may follow
the trajectory of the expected proportions through succeeding generations. A
necessary condition for the convergence of the GA is that the expected propor-
tion of optimal schemata must go to unity in the limit as generations continue:

lim P, = 1.
P

To examine the behavior of these equations more carefully, we look at several
numerical solutions of the extended schema equations for Type I and 1l problems.
Some theoretical results are presented briefly without proof.

MDP Results

Figure 2.10 presents computational results for a representative Type I problem.
At first, the optimum schema (schema 11) loses proportion; however, as sche-
mata 10 and 00 lose proportion, the remaining battle is fought between schemata
11 and 01 alone, with 11 winning in the end. It may be shown that this result

Another Perspective: The Minimal Deceptive Problem 51

generalizes to any Type | problem with nonzero starting proportions of the four
schemata. This result is surprising, as we originally designed the problem to cause
divergence from the global optimum. In short, dynamic analysis tells us that the
Type 1 minimal deceptive problem is not GA-hard.

Figures 2.11 and 2.12 present computational results for a Type 11 MDP, In Fig.
2.11 we see representative convergent results where (as in the Type | case) the
solution converges to the optimum despite its initial deception. Not all Type 11
problems converge like this, however; when the complementary schema 00 has
too great an initial proportion, schema 11 may be overwhelmed, with resulting
convergence to the second best solution. Representative divergent results are
shown in Fig. 2.12. Simple sufficient conditions for the convergence of a Type 11
problem may be derived (Goldberg, 1987b); it is surprising that all Type II prob-
lems converge to the best solution for most starting conditions.

Recent results (Bridges and Goldberg, 1987; Goldberg, 1987a) have ex-
tended the exact schema analysis to higher order problems. Other work along
these lines may permit a constructive definition of the class of GA-hard problems.
Of course, all of this work assumes a fixed coding. The addition of reordering
operators such as inversion may be nature’s answer to problems too difficult for
a simple GA. We consider such operators and their analysis in Chapter 5.

TYPE I. FO1 > FOO

i
2 "
L
$
E 01

10
S L
nﬂ 50 100

Generation

FIGURE 2.10 Numerical solution of a Type I, minimal deceptive problem
(MDP): r = 1.1, ¢ = 1.05, ¢’ = 0.0.

52

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

TYPE II: FOO > FO4 (CONVERGES)

Pq:ulltlnn_ Proportion

u A
0 B0 100
Generation

FIGURE 2.11 Numerical solution of a Type II, minimal deceptive problem that
converges: r = 1.1, ¢ = 0.9, ¢’ = 0.5 with equal initial proportions.

TYPE II: FOO > FO4 (DIVERGES)

Population Proportion

10 01

o z
[Bt £ 50 100
Generat lon

FIGURE 2.12 Numerical solution of a Type II, minimal deceptive problem that
diverges: r = 1.1, ¢ = 0.9, ¢’ = 0.5 with unequal initial proportions.

Schemata Revisited: Similarity Templates as Hyperplanes 53

SCHEMATA REVISITED: SIMILARITY TEMPLATES
AS HYPERPLANES

Over the past two sections we have looked at schema processing from two per-
spectives: using schema visualization we have viewed schema processing as the
manipulation of important periodicities, and under the minimal deceptive prob-
lem we have considered schema processing in a competitive, ecological setting,
Another useful vantage point may be reached if we take a more geometric view
of the underlying bit space.

To generate this geometrical vision of our search space, consider the strings
and schemata of length { = 3. Because the string length is so short, it is easy to
draw a picture of the search space (Fig. 2.13). In this representation, we view the
space as a three-dimensional vector space. Points in the space are strings or sche-
mata of order 3. Lines in the space, as indicated in the diagram, are schemata of
order 2. Planes in the space are schemata of order 1, and the whole space is
covered by the schema of order 0, the schema ***.

This result generalizes to spaces of higher dimension where we must aban-
don the geometrical notions available to us in 3-space. Points, lines, and planes
described by schemata in three dimensions generalize to hyperplanes of varying

3 1% Plane
010 11% Line
uo—
]
1 =% Plane
i "'/
011 H
4 100
T e GRS

'L 101

w(w Plane

FIGURE 2.13 visualization of schemata as hyperplanes in three-dimensional
space.

54

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

dimension in n-space. Thus we can think of a genetic algorithm cutting across
different hyperplanes to search for improved performance,

SUMMARY

In this chapter, we have undertaken a more rigorous appraisal of genetic
algorithm performance using a more careful analysis of schemata (similarity tem-
plates). The primary result, embodied in the fundamental theorem of genetic
algorithms, says that high-performance, short-defining-length, low-order sche-
mata receive at least exponentially increasing numbers of trials in successive gen-
erations. This occurs because reproduction allocates more copies to the best
schemata and because simple crossover does not disturb short-defining-length
schemata with high frequency. Since mutation is fairly infrequent, it has little
cffect on these important schemata. The exponential form of this trial allocation
turns out to be a rational way to allocate trials, as it connects with the optimal
solution to a two-armed bandit problem.

By processing similarities in this manner, a genetic algorithm reduces the
complexity of arbitrary problems. In a sense, these highly fit, short, low-order
schemata become the partial solutions to a problem (called building blocks), and
a GA discovers new solutions by speculating on many combinations of the best
partial solutions contained within the current population.

That building blocks do indeed lead to better performance is an underlying
assumption of the simple genetic algorithm called the building block hypothesis.
The Walsh-schema transform has provided us with an important tool for under-
standing whether particular problems are amenable to simple GA solution. Work
in this area has also suggested that functions that are GA-hard (that is, difficult to
solve with the simple three-operator genetic algorithm) tend to have remote op-
tima, something akin to finding a needle in a haystack; many optimization meth-
ods, not just genetic algorithms, have trouble finding answers in problems with
such isolated optima.

Additional insight into the workings of genetic algorithms has been obtained
through analysis of the minimal deceptive problem—the smallest problem that
can possibly be deceptive or misleading for the simple genetic algorithm. It is
surprising that for many likely initial conditions the MDP is not GA-hard. In other
words, even though we construct a difficult and misleading function (a badly
epistatic function), the genetic algorithm often refuses to be misled. This is en-
couraging and is no doubt responsible for much of the empirical success of sim-
ple genetic algorithms in epistatic problem domains.

Analysis of genetic algorithm performance has led us to understand better
why GAs work. In the next chapter a simple genetic algorithm is programmed
using the Pascal programming language, and we observe its performance in a trial
problem.

Problems 55

B PROBLEMS

2.1. Consider three strings A, = 11101111, A, = 00010100, and A, =
01000011 and six schemata H, = 1******* H, = (°®****** H, = ****2*]],
H, = ***0°00°, Hy = 1*****1*, and H; = 1110**1*. Which schemata are
matched by which strings? What are the order and defining length of each of the
schemata? Estimate the probability of survival of each schema under mutation
when the probability of a single mutation is p,, = 0.001. Estimate the probability
of survival of each schema under crossover when the probability of crossover
b, = 0.85,

2.2. A population contains the following strings and fitness values at generation
0

String Fitness
1 10001 20
2 11100 10
. 00011 5
4 01110 15

The probability of mutation is p,, = 0.01 and the probability of crossover is
p. = 1.0. Calculate the expected number of schemata of the form 1**** in gen-
eration 1. Estimate the expected number of schemata of the form 0**1* in gen-
eration 1.

2.3. Devise three methods of performing reproduction and calculate an estimate
of the expected number of schemata in the next generation under each method,

2.4. Suppose we perform a crossoverlike operation where we pick two cross
sites and exchange string material berween the two sites.

xxx|lxx]x x XX XYYy XX

yyylyylyy YyYYyXxyy

Calculate a lower bound on the survival probability of a schema of defining length
d and order o under this operator. Recalculate the survival probability when we
treat the string as a ring (when the left end is assumed to be adjacent to the right
end).

2.5. How many unique schemata exist within strings of length / = 10, 20, and
30 when the underlying alphabet is binary? How many unique schemata of order
3 exist in binary strings of length / = 10, 20, and 30? Calculate reasonable upper
and lower bounds on the number of schemata processed using strings of length
{ = 10, 20, and 30 when the population size m1 = 50. Assume a significant build-
ing block length equal to 10 percent of the total string length.

Chapter 2 / Genetic Algorithms Revisited: Mathematical Foundations

2.6. Suppose a schema H when present in a particular string causes the string to
have a fitness 25 percent greater than the average fitness of the current popula-
tion. If the destruction probabilities for this schema under mutation and cross-
over are negligible, and if a single representative of the schema is contained in
the population at generation 0, determine when the schema H will overtake pop-
ulations of size n = 20, 50, 100, and 200.

2.7. Suppose a schema H when present in a particular string causes the string to
have a fitness 10 percent less than the average fitness of the current population.
If the destruction probabilities for this schema under mutation and crossover are
negligible, and if representatives of the schema are contained in 60 percent of
the population at generation 0, determine when the schema H will disappear
from populations of size n = 20, 50, 100, and 200.

2.8. A two-armed bandit pays equal awards with probabilities p, = 0.7 and
P, = 0.3. Estimate the number of trials that should be given to the observed best
arm after a total of 50 trials.

2.9. Derive a more accurate formula for calculating the number of unique sche-
mata contained in a randomly generated initial population of size m when the
string length is [(Hint: Consider the probability of having no schemata of a
particular order and use the complementary probability to count the number of
schemata represented by one or more.)

2.10. Suppose a problem is coded as a single unsigned binary integer between 0
and 127 (base 10), where 0000000, = 0,, 1000000, = 04,, and 1111111 =
127. Sketch the portion of the space covered by the following schemata; 1°*****,
!ll.llul 1 ll l 11.1 lo.tt.tl01' l.ll ll._

B COMPUTER ASSIGNMENTS

A. A fitness function for a single locus genetic algorithm is given by the function
Jfi = constant and f;, = constant. Derive the recursion relationship for the ex-
pected proportion of 1's under reproduction alone and reproduction with muta-
tion in an infinitely large population. Program the finite difference relationship
and calculate the expected proportion of 1's between generation 0 and 100
assuming equal proportions of 1's and 0’s initially and a ratio of f/f, =
r= 11,210

B. Redo Problem A including mutation using mutation probability values of
P = 0.001,0.01,0.1.

Computer Assignments 57

C. Consider an order 2 schema where we assume constant fitness values as fol-
lows:

Illllllll r"
'Illllnll r|-u
lio..blii I"OI

.lOIilOl. rﬂﬁ

Write finite difference relationships for the proportion of the four schemata (11,
10, 01, 00) under reproduction, crossover, and mutation. Be sure to use the cor-
rect loss and gain terms due to crossover. Program the finite difference relation-
ships and simulate the performance of a large population with the f constants of
Fig. 2.10. Compare and contrast results at p,, values of 0.001, 0.01, 0.1 to the
results of Fig. 2.10.

D. For the function f{x) = x* on the integer interval [0, 31] coded as a five-bit,
unsigned binary integer, calculate the average fitness values for all 3* schemata.
From this data, determine whether the function-coding is GA-deceptive or not.

E. Design a three-bit function that is GA-deceptive. Prove its deception by cal-
culating all 3* schema averages.

Computer Implementation
of a Genetic Algorithm

When first approaching genetic algorithms, many users hesitate, not knowing
where to start or how to begin. On the one hand, this aversive reaction seems
strange. After all, in the first two chapters we have seen how genetic algorithms
are mechanically quite simple, involving nothing more than random number gen-
eration, string copies, and partial string exchanges. On the other hand, for many
business, scientific, and engineering users and programmers this stark simplicity
is itself part of the problem; these individuals are familiar with using and program-
ming high-level computer codes involving complex mathematics, interwoven da-
tabases, and intricate computations. Moreover, this same audience is most
comfortable with the reassuring repeatability of deterministic computer pro-
grams. The direct manipulation of bit strings, the construction of custom codings,
and even the randomness of GA operators can present a sequence of high hurdles
that prevent effective application.

In this chapter, we leap these obstacles by first constructing the data struc-
tures and algorithms necessary to implement the simple genetic algorithm de-
scribed earlier. Specifically, we write a Pascal computer code called the simple
genetic algorithm (SGA), which contains nonoverlapping string populations, re-
production, crossover, and mutation applied to the optimization of a simple func-
tion of one variable coded as an unsigned binary integer. We also examine some
implementation issues such as discretization of parameters, coding of strings, en-
forcement of constraints, and mapping of fitness that arise in applying GAs to
particular problems.

60 Chapter 3 / Computer Implementation of a Genetic Algorithm

DATA STRUCTURES

Genetic algorithms process populations of strings. Therefore it comes as no sur-
prise that the primary data structure for the simple genetic algorithm is a string
population. There are any number of ways to implement populations. For the
SGA we choose the simplest; we construct a population as an array of individuals
where each individual contains the phenotype (the decoded parameter or param-
eters), the genotype (the artificial chromosome or bit string), and the fitness
{ objective function) value along with other auxiliary information. A schematic of
a population is shown in Fig. 3.1. The Pascal code of Fig. 3.2 declares a population
type corresponding to this model. For readers unfamiliar with Pascal, the essen-
tials of the language are presented in Appendix B; this appendix also presents
some random number generation routines and utilities. Even without formal
training, many readers should be able to decipher the essence of this code.

Referring to Fig. 3.2, we see the declaration of a number of constants: the
maximum population size, maxpop, and the maximum string length, maxstring,
These set upper bounds on the population size and the string length. Following
the constant declarations, we declare the population itself, along with its com-
ponents in the type block. As we can see, the type population is an array of type
individual (indexed berween 1 and maxpop). Type individual is a record com-
posed of a type chromosome called chrom, a real variable called fitness, and a
real type variable called x These represent the artificial chromosome, the string
fitness value, and the decoded parameter value x respectively. Digging further,
we see that the type chromosome is itself an array of type allele (indexed be-
tween 1 and maxsiring), which in this case is simply another name for the boo-
lean type (a single bit, true or false).

INDIVIDUAL INDIVIDUALS
NUMBER STRING X | £0x DTHER
1 D1111 15 | ees
2 01001 9 | |1
= - : g
n 00111 7 | 49

FIGURE 3.1 Schematic of a string population in a genetic algorithm.

Data Structures 61

const maxpop - 100;
maxstring = 30;
type allele = boolean; (Allele = bit pesition)

chromosome = array|[l..maxstring) of allele; (| String of bits)
individual = record
chrom:chromosome; (Genotype = bit strimg)

x:real; { Phenotype = unsigned Integer |}

fitness:real; | Objective function value }

parentl, parent?, xsite:integer; | parents & cross pt)
end;

pepulation array(l. .maxpop) of Individual,;

FIGURE 3.2 A simple genetic algorithm, SGA, data type declarations in Pascal.

In the SGA, we apply genetic operators to an entire population at each gen-
eration, as shown in Fig. 3.3. To implement this operation cleanly, we utilize two
nonoverlapping populations, thereby simplifying the birth of offspring and the
replacement of parents. The declarations of the two populations oldpop and new-
pop are shown in Fig. 3.4 along with the declaration of a number of other global
program variables. With these two populations, it is a simple matter to create
new offspring from the members of oldpop using the genetic operators, place
those new individuals in newpop, and set oldpop to newpop when we are

GENERATION GENERATION
T T + 1
1 1
2 2
3 3
4 &
e REPRODUCTION
- CROSIOVER &
= MUTATION z
H-1 MH-1
]

FIGURE 3.3 Schematic of nonoverlapping populations used in the SGA.

62

Chapter 3 / Computer Implementation of a Genetic Algorithm

var oldpop, newpop:population; [Twe mon-overlapping populations)
popsize, lchrom, gen, maxgen:integer; (Integer global variables)
pcross, pmutation, sumfitness:real; | Real global variables)
nmutation, ncross:integer; | Integer statistics)
avg, max, min:real; | Real statistics)

FIGURE 3.4 SGA global variable declarations in Pascal.

through. There are other, more storage-efficient methods of handling populations.
We could maintain a single overlapping population and pay more careful atten-
tion to who replaces whom in successive populations. There is also no particular
reason to keep the population size constant. Natural populations certainly change
in size, and there may be motivation during artificial genetic search to permit
population size variation from generation to generation, There is, however,
stronger motivation in our current work to keep things simple, and this has
guided the choice of nonoverlapping populations of constant size. In our machine
learning work in later chapters we will need to come to terms with the popula-
tion issue once more.

With our data structures designed and built, we need to understand the three
operators—reproduction, crossover, and mutation—essential to SGA operation,
Before we can do this, we need to define some of the more important global
program variables that affect the operation of the entire code. Looking at Fig. 3.4
once again, we see a number of variables of type integer Among them are the
variables popsize, Ichrom, and gen. These important variables correspond to
what we have been calling population size (n), string length (/), and the gener-
ation counter (¢). Additionally the variable maxgen is an upper limit on the num-
ber of generations. Also shown in Fig. 3.4 are a number of important global real
variables: pcross, pmutation, sumfitness, avg max, and min. The variables
peross and pmutation are the probabilities of crossover and mutation respec-
tively (p, and p,,). The sumfitness variable is the sum of the population fitness
values (Zf). This variable is important during roulette wheel selection. There are
a few other global variables we have not discussed; a complete listing of the SGA
code is presented in Appendix C.

REPRODUCTION, CROSSOVER, AND MUTATION

The three operators of the simple tripartite algorithm can each be implemented
in straightforward code segments. This comes as no surprise, since we have been
touting the simple mechanics of these operators. Before we look at each routine,
we must remember the common thread running through the three operators:

Reproduction, Crossover, and Mutation 63

each depends on random choice. In the code segments that follow, we assume
the existence of three random choice routines:

random returns a real pseudorandom number between zero and one (a
uniform random variable on the real interval [0, 1]).

Jlip returns a boolean true value with specified probability (a Ber-
noulli random variable).

rid returns an fnteger value berween specified lower and upper limits
(a uniform random variable over a subset of adjacent integers),

A more complete discussion of these routines is contained in Appendix B where
several programming examples are given.

In the simple genetic algorithm, reproduction is implemented in the function
select as a linear search through a roulette wheel with slots weighted in propor-
tion to string fitness values. In the code shown in Fig. 3.5, we see that select
returns the population index value corresponding to the selected individual. To
do this, the partial sum of the fitness values is accumulated in the real variable
partsum. The real variable rand contains the location where the wheel has
landed after a random spin according to the computation:

rand := random * sumfitness

Here the sum of the population fitnesses (calculated in the procedure statistics)
is multiplied by the normalized pseudorandom number generated by random.
Finally the repeat-until construct searches through the weighted roulette wheel
until the partial sum is greater than or equal to the stopping point rand The
function returns with the current population index value j assigned to sefect

function select{popsize:integer; sumfitness:real;

var pop:population):integer;
[Select a single individual via roulette wheel selection)
var rand, partsum:real; (Random point on wheel, partial sum)

j:integer; | population index)
begin
partsum := 0.0; j := 0; | Zero out counter and accumulator)
rand := random * sumfitness; ([Wheel point calc. uses random number [0,1])
repeat | Find wheel slot)
Ji=1+1;

partsum := partsum + pop[j].fitness;
until (partsum >= rand) or (j = popsize);
[Return individual number)
select := j;
end;

FIGURE 3.5 Function select implements roulette wheel selection.

Chapter 3 / Computer Implementation of a Genetic Algorithm

This is perhaps the simplest way to implement selection, There are more
efficient codes to implement this operator (a binary search will certainly speed
things up), and there are many other ways to choose offspring with appropriate
bias toward the best. We will examine some of these in later chapters, but for
now we stay with this basic mechanism.

The code segment select gives us a straightforward way of choosing offspring
for the next generation. From our previous descriptions, we Know our next step
is crossover. In SGA the crossover operator is implemented in a procedure that
we, cleverly enough, have called crossover (Fig. 3.6). The routine crossover takes
two parent strings called parent] and parent2 and generates two offspring strings
called childl and child2. The probabilities of crossover and mutation, peross and
pmutation, are passed to crossover; along with the string length /chrom, a cross-
over count accumulator ncross, and a mutation count accumulator nmutation,

Within crossover the operations mirror our description in Chapter 1. At the
top of the routine, we determine whether we are going to perform crossover on
the current pair of parent chromosomes. Specifically, we toss a biased coin that
comes up heads (true) with probability pcross. The coin toss is simulated in the
boolean function flip, where fTip in turn calls on the pseudorandom number

procedure crossover(var parentl, parent2, childl, child2:chromosome;
var lchrom, ncross, mmutation, jcross:integer;
var pcross, pmutation:real);

| Cross 2 parent strings, place in 2 child strings)

var j:integer;

begin
if flip(pcross) then begin | Do crossover with p{cress))
jeross := rnd(l,lchrom-1); | Cross between 1 and 1-1)
NCcross = mcross + 1; | Incrememt crossover counter |
end else { Otherwise set cross site toe force mutation)

jeross := lchrom;
| 1lst exchange, 1 to 1 and 2 to 2)
for j := 1 to jeress do begin
childl[j] := mutation(parentl[j], pmutation, nmutation);
child2[j] := mutation(parent2[j], pmutation, nmutation);
end;
{ 2nd exchange, 1 to 2 and 2 to 1]
if jeross<lchrom then [Skip if cross site is lchrom--no crossover]
for j := jeross+l to lchrom do begin
childl[j] := mutation(parent2[j], pmutation, nmutation);
child2[j] := mutation{parentl[j], pmutation, nmutation);
end;
end;

FIGURE 3.6 Procedure crossover implements simple (single-point) crossover.

Reproduction, Crossover, and Mutation 65

routine random. If a cross is called for, a crossing site is selected between 1 and
the last cross site. The crossing site is selected in the function rnd, which returns
a pseudorandom integer between specified lower and upper limits (between 1
and Ifchrom— 1), If no cross is to be performed, the cross site is selected as
Ichrom (the full string length /) so a bit-by-bit mutation will take place despite
the absence of a cross. Finally, the partial exchange of crossover is carried out in
the two for-do constructs at the end of the code. The first for-do handles the
partial transfer of bits berween parent! and child! and between parent2 and
child2. The second for-do construct handles the transfer and partial exchange of
material between parent! and child2 and between parent2 and childl. In all
cases, a bit-by-bit mutation is carried out by the boolean (or allelean) function
mutation.

Mutation at a point is carried out by mutation as shown in Fig, 3.7. This
function uses the function f7ip (the biased coin toss) to determine whether or
not to change a true to a false (a 1 to a 0) or vice versa. Of course the function
Slip will only come up heads (true) pmutation percent of the time as a result of
the call to the pseudorandom number generator random within flip itself. The
function also keeps tabs on the number of mutations by incrementing the variable
nmutation. As with reproduction, there are ways to improve our simple mutation
operator. For example, it would be possible to avoid much random number gen-
eration if we decided when the next mutation should occur rather than calling
Jlip each time. Again, in this chapter, we avoid sophisticated niceties and stick
with the basics.

The three main pieces of our genetic algorithm puzzle have proven to be
none too puzzling. We have seen in this section how the three may be easily
coded and easily understood. The next section continues piecing together the
bigger GA picture as we coordinate reproduction, crossover, and mutation in a
single generation.

function mutation(alleleval:allele; pmutation:real;
var nmutation:integer):allele;
| Mutate an allele w/ pmutation, count number of mutatioms }
var mutate;boolean;
begin
mutate := flip(pmutation); (Flip the bilased coin)
if mutate then begin
nmutation := mmutation + 1;
mutation := not alleleval; (Change bit value)
end else
mutation ;= alleleval; [Ho change)
end;

FIGURE 3.7 Function mutation implements a single-bit, point mutation.

Chapter 3 / Computer Implementation of a Genetic Algorithm

A TIME TO REPRODUCE, A TIME TO CROSS

With the Big Three designed and built, creating a new population from an old
one is no big deal. The proper sequencing is shown in Fig. 3.8 in the procedure
generation. Starting at an individual index j = 1 and continuing until the popu-
lation size, popsize, has been exceeded, we pick two mates, matel and mate2,
using successive calls to select We cross and mutate the chromosomes using
crossover (which itself contains the necessary invocations of mutation). In a final
flurry of mad activity, we decode the pair of chromosomes, evaluate the objective
(fitness) function values, and increment the population index j by 2.

Having already examined select, crossover, and mutation in detail, we need
only concern ourselves with the two problem-dependent routines hinted at
above. For any problem we must create a procedure that decodes the string to

procedure generation;
| Create a new generation through select, crossover, and mutation)
| Note: generation assumes an even-numbered popslize !
var j, matel, mate?, jcross:integer;
begin
I =1
repeat | select, crossover, and mutation untll newpop is filled)
matel := select(popsize, sumfitness, oldpop); [plck pair of mates)
mate? := select(popsize, sumfitness, oldpop).
| Crossover and mutatlion - mutation embedded within crossover)
crossover (oldpop[matel] .chrom, oldpop[mate2].chrom,
newpop| §] .chrom, newpop[j + 1].chrom,
lchrom, ncross, mmutation, jcross, peross, pmutation);
{ Decode string, evaluate fitness, & record parentage data on both children }
with newpop[j] do begin
x ;= decode(chrom, lchrom);
fitness := objfunc(x);
parentl := matel;
parent? = mate2;
usite := jeross;
end;
with newpop[j+1] do begin
x := decode({chrom, lchrom):
fitness := objfunc(x);
parent] := matel;
parent? := matel;
xsite := jcross;
end;
{ Increment population index)
Ji=3+2;
until j>popsize
end;

FIGURE 3.8 Procedure generation generates a new population from the pre-
vious population.

A Time to Reproduce, a Time to Cross 67

create a parameter or set of parameters appropriate for that problem. We must
also create a procedure that receives the parameter or set of parameters thus
decoded and evaluate the figure of merit or objective function value associated
with the given parameter set. These routines, which we call decode and objfunc,
are the two places where the GA rubber meets the applications road, For different
problems we will often need different decoding routines (although later on in
this chapter we will examine some standard routines that have proven useful in
a number of studies), and in different problems we will always need a different
fitness function routine. Having said this, it is still useful to look at a particular
decoding routine and a particular fitness function. To be consistent with work
earlier in this book, we will continue to use binary unsigned integer coding, and
we will continue to use a simple power function as the fitness function; however,
we will increase the value of the exponent, using the function flx) = x'

SGA uses the decoding routine shown in Fig. 3.9, the function decode. In this
function, a single chromosome is decoded starting at the low-order bit (position
1) and mapped right to left by accumulating the current power of 2— stored in
the variable poweroftwo—when the appropriate bit is set (value is true). The
accumulated value, stored in the variable accum, is finally returned by the func-
tion decode.

The objective function used in SGA is a simple power function, similar to the
function used in Chapter 1. In SGA we evaluate the function f(x) = (x/coeff)".
The actual value of coeff is chosen to normalize the x parameter when a bit string
of length Ichrom = 30 is chosen. Thus coeff = 2% — 1 = 1073741823.0. Since
the x value has been normalized, the maximum value of the function will be f{x)
= 1.0 when x = 2* — 1 for the case when Ichrom = 30. A straightforward
implementation of the power function is presented in Fig. 3.10 as the function
objfunc.

function decode(chrom:chromosome; lbits:integer):real;
[Decode string as unsigned binary integer - true=1, false=0 }
var j:integer;
accum, powerof?:real;
begin
accum = 0.0; powerof2 := 1;
for j := 1 to lbits do begin
if chrom[j] then accum := accum + powerof2;
powercf? := powerofl * 2;
end;
decode := accum;
end ;

FIGURE 3.9 Funciion decode decodes a binary string as a single, unsigned
integer.

68 Chapter 3 / Computer Implementation of a Genetic Algorithm

function objfunc(x:real):real;

| Fitness function - £(x) = x¥¥n |}

const coef = 1073741823.0; (Coefficient to normalize domain)
n = 10; | Power of x)

begin objfunc := power(x/coef, m) end;

FIGURE 3.10 Function objfunc calculates the fitness function f(x) = cx'" from
the decoded parameter x.

GET WITH THE MAIN PROGRAM

We have described the data structures. We have built the genetic operators. We
have decoded the strings, and we have figured the fitness values. Now is the time
to wrap a ribbon around this parcel, test it, and ship it on for further use. In Fig,
3.11 we see the main program of SGA. At the top of the code, we start innocently
enough by setting the generation counter to 0, gen := 0. We build steam as we
read in program data, initialize a random population, calculate initial population
statistics, and print out a special initial report using the procedure initialize. We
won't dwell on the initialization code here. The interested reader should refer to
Appendix C, which contains a complete copy of the SGA code.

At long last, with necessary preliminaries complete, we hit the main loop
contained within the repeat-until construct. In rapid succession we increment
the generation counter, generate a new generation in generation, calculate new
generation statistics in statistics, print out the generation report in report, and
advance the population in one fell swoop:

oldpop := newpop;

All this continues, step after relentless step, until the generation counter exceeds
the maximum, thereby forcing the machinery to a grinding halt.

In our rush to see the big picture, we have missed some important details.
The statistical routine statistics (Fig. 3.12) calculates the average, maximum, and
minimum fitness values; it also calculates the sumfitness required by the roulette
wheel. This version of statistics is again something of a minimally acceptable
solution. Many other interesting population statistics could and probably should
be tracked. For example, allele convergence statistics are often tabulated during
a generation. Best string so far or best k strings so far could be stored for future
reference. Population standard deviation or even population histograms might
also be of interest in doing more detailed run postmortems. The separation of
statistical functions in the routine statistics permits the easy addition of any or all
of these computations.

Get with the Main Program 69

begin [Main program)
gen = 0; | Set things up |
initialize;
repeat { Main iterative loop)
gen = gen + 1;
generation;
statistics(popsize, max, avg, min, sumfitness, newpop);
report(gen);

oldpop := newpop; | advance the generation)
until (gen >= maxgen)
end, | End main program)

FIGURE 3.11 Main program for a simple genetic algorithm, SGA.

The procedure report presents the full population report, including strings,
fitnesses, and parameter values. A listing of report and its single subprocedure
writechrom are presented in Fig. 3.13. Once again, a wide array of tabular and
graphic reporting options may be useful in genetic algorithm work. The simple
report procedure is a good tool because it permits side-by-side comparison of
consecutive generations. In turn, this allows checking of operators and analysis
of the events leading to the construction of the best individuals.

procedure statisties(popsize:integer;
var max,avg,min,sumfitness:real;
var pop:population);
{ Caleulate population statisties)
var j:integer;
begin
{ Inicialize)
sumfitness := pop[l).fitness;
min := pop[l].fitness;
max = pop[l].fitness;
[Loop for max, min, sumfitness)
for j := 2 to popsize do with pop[j] do begin
sumfitness = sumfitness + fitmess; [Accumulate fitness sum |

if fitness>max then max := fitness; | New max)
if fitness<min then min := fitness; { New min)}
end;

| Calculate average)
avg = sumfitness/popsize;
end;

FIGURE 3.12 Procedure statistics calculates important population statistics.

70 Chapter 3 / Computer Implementation of a Genetic Algorithm

| report.sga: contains writechrom, report)

procedure writechrom(var out:text; chrom:chromosome; lchrom:integer);
{ Write a chromosome as a string of 1's (true's) and 0's (false’s))
var j:integer,;
begin
for | := lehrom dowvmto 1 do
if chrom[j] then write(out,'l’)
else write(out,'0');
end;

procedure report(gen:integer),;

{ Write the population report |

const linelength = 132;

var j:integer;

begin
repchar(lst,’-' ,linelength); writeln(lst);
repchar(lst,’ *,50); writeln(lst,’Population Reporc');

repchar(lst,’ *,23); write(lst, ‘Generation *,gen-1:2);
repchar(lst,” ',57); writeln(lst,'Generation ", gen:2);
writeln(lsc);
write(lsc,' # string x fltness');
write(lst,' # parents xsite');
writeln(lst, N string x fitness'),;

repchar(lsc,’'-' ,linelength); writeln(lsct);
for §J := 1 to popsize do begin
write(lst,j:2, ') ');
{ 0ld string)
with oldpop[j] do begin
writechrom(lst,chrom,lchrom);
write{lsc,’ ', x:10, * *, fitness:6:4, ' | "3
end;
[New string)
with newpop(j] do begin
write(lsct,’ v j:2, ') (', paremcl:2, ',', paremnt2:2, ') ¥
wsite:2," e £
writechrom(lst,chrom, lchrom) ;
writeln(lst, * ",x:10,' ', fitness:6:4);
end;
end;
repchar(lst,’-',linelength); writeln(lst);
{ Generation statisties and accumulated values)
writeln(lst,” MNote: Gemeration ', gen:2, ' & Accumulated Statisties: '
, max=", max:6:4,', min=', min:6:4, ', avg=',6 avg:6:4, ', sum='
,sumfitness:6:4, ', mnmutation=", mmutation, ', ncross= ', ncross);
repchar(lst, -’ linelength); writelm(lst),;
page(lst),;
end;

FIGURE 3.13 Procedures report and writechrom implement population
reports.

HOW WELL DOES IT WORK?

We have trudged through the SGA code, step by step, inch by inch, gaining a
better feel for some of the ins and outs of genetic algorithm programming. Of
course, this is not the only way to skin a GA cat, and a number of public domain

How Well Does It Work? n

codes are available with numerous bells and whistles for effective optimization
in a variety of domains (Booker and De Jong, 1985; De Jong, 1982; Grefenstette,
1984a, 1984b). Actually, we will be adding several important features of our own
in this and later chapters. Let us resist temptation and hold off the fancy features.
In this section, we stick with the bare-bones GA and see how well it works.

We have already specified our simple test problem. The bit string decodes as
an unsigned 30-bit integer. The fitness function f is the power function f(x) =
(x/c)", where ¢ has been chosen to normalize x, and n has been chosen as 10,
Some of you may cry foul, wondering why we have chosen a different function
from the one followed in Chapters 1 and 2 (f(x) = x*). Actually, we have
changed the problem to make things tougher for the GA, as illustrated in Fig.
3.14. With the larger exponent, the average function value is lower, and a smaller
proportion of the domain maps to values above some specified quantity. As a
result, the random starting population will not contain very good points to begin;
this is a better test of GA performance.

To specify our computer simulations more precisely, let's choose a trial set
of GA parameters. In De Jong's (1975) study of genetic algorithms in function
optimization, a series of parametric studies across a five-function suite of prob-
lems suggested that good GA performance requires the choice of a high crossover
probability, a low mutation probability (inversely proportional to the population
size), and a moderate population size. Following these suggestions we adopt the
following parameters for our first computer simulations:

pmutation = 0.0333 (probability of mutation)
peross = 0.6 (probability of crossover)
popsize = 30 (population size, n)

1

f(x)
‘2
0
0
]
X

FIGURE 3.14 Comparison of the functions x* and x' on the unit interval.

72

Chapter 3 / Computer Implementation of a Genetic Algorithm

The string length for the hand simulations of a genetic algorithm in Chapter
1 was short (short by genetic algorithm standards): / = 5. This translated into a
ridiculously small space with only 2* = 32 points, where there was little practical
need for genetic search. Any enumerative search or random walk would have
found good points quickly. Of course, at that time our aim was pedagogical clarity,
and the size of the search space was of little interest. Now that we are interested
in seeing a stiffer test of GA performance, the string length is increased and the
exponent of the test function is increased. With a string length /chrom = 30, the
search space is much larger and random walk or enumeration should not be so
profitable. With lchrom = 30 there are 2 = 1.07(10'") points. With over 1,07
billion points in the space, one-at-a-time methods are unlikely to do very much
very quickly. Moreover, the increase in exponent has adjusted the space so that
only 1.05 percent of the points have a value greater than 0.9, as shown in Fig.
3.14. These two modifications make the problem a better test of GA performance.

We start the simple genetic algorithm and let it run for seven generations.
The statistical report for the run is shown in Fig. 3.15 and the initial generation
(gen = 0) and the first generation are shown side by side in Fig. 3.16, The initial
population starts out with a population average fitness of 0.0347. The average
fitness of the function on the specified interval may be calculated to be 0.0909.
In some sense, we have been unlucky (but not unrealistically so) in our random
choice of a population. Additionally glancing at our best member fitness in the
initial population, f,,., = 0.2824, we should expect to have 30(1 — 0.2824"') =
3.56 or approximately four strings in a random population of 30 with fitness

SGA Parameters

Population size (popsize) = 30
Chromosome length (lchrom) = 30
Haximum # of generation (maxgen) = 10
Crossover probability (pecress) = & DODODODOO0E -01
Hutation probability (pmutation) = 3.3300000000E-02

Initial Generation Statistics

Initial population maximum fitness 2.82413225326-01
Initial population average fitness 3.4T15832788€E -02
Initial population minimm fitness = 1.14086151375E-10
Initial population sum of fitness = 1.041474983TE+00

FIGURE 3.15 Initial report from an 5GA, simple genetic algorithm, run.

How Well Does It Work? 73

R R RN SRR AR SR AN E AR - L T R .

Population Report
Generation 0 Generation 1

'] strimg x fitness # parents xsite string x fitness

13 111000011001100000701111110700 7.4621E+08 0.2824 | 13 ¢ 1,19 30 111000011001100000101101110100 9.4621E+08 0.2824
2) 110011001011010111000000100001 8,58526+08 0. 1049 | 2) ¢ 1,79 30 110101011110001110010011000101 B,9712E+08 0, 1458
3y 0107011711007011110000010001101 3.67T3PE+08 0.0000 | 3y 23,79 1% 101010111000000110101 10000001 8, 9455E+08 0. 1647
4) 011001111000011101101111011010 &.3423E+08 0.0001 | &) (23,'%) 19 111111001000000010010011000101 1.0591E+09 0.8715
$) 011111111010010101011010110110 5.3539E+08 0.0009 | 5) (19, 13 11 111000011001 7000001100110001071 9.4621E-08 0.2824
&) 101101111001000011000101101101 T7.46993E+08 0.0359 | &) (19, 1) 11 110101011110000010001111110100 8.9707E+08 0. 1457
7) 000110101111100001001011111000 1.1312€+08 0.0000 | T (6, 1) 111000011001100000101111100100 9.446216+08 0,2824
8) 010700111010111010001111100010 3,5059E+08 0.0000 | 8) (1, 1 110011010101101100011001110100 8.61326+08 0.1103
23 0110110011100070710011110001011 &.54T0E+08 0.0002 I) (23,10 1011110071000010011110110010001 7,9071E+08 0.0469
10y 010011010110101000001101011011 3,.24T0E+08 0.0000 | 10) (23,17 110011101001000100011101100011 8.56640E+08 0.1170
11y 010111011010101011001107000070 3.9287€+08 0.0000 | 1) (6,26) 10110111000100001 1000101101101 7.6783E+08 0,0350
12y 010011010011001010110010001110 3.2379E+08 0.0000 | 12) (6,26) 110010000101010100110110011110 &,4026E+08 0.0861
13} 110000100101101110110000100111 B.1520E+08 0.0436 | 13) ¢ 2,19) 110101011110100010010000100001 &.5T20E+08 0.1659
14) 010110001001111101000100110001 3. TITIE«08 0.0000 | %y (2, 11001101101101011100001 1000101 &,4281E+08 0.1122
15) 0101101117110000101101110011070 3.8538E+08 0.0000 | 15) (17,10 110011111001000100011100100011 8.7040E+08 0. 1228
16) 1100711010710110010001 10071100000 B.6129E+08 0.1103 | 16) (17,17) 110010111101000100011100100011 8,54B7E+08 0,1023
17 1M0011111107100010001 1100100011 B.T165E+08 0.1243 | 17 (19,17 110101011110000010010011000111 8.9707E+08 0. 1657
18) 1000000001000101111001071011100 5.3802E+08 0.0010 | 18) (19,17) 110011111101000000011101000011 B.7163E+08 0.1243
193 110101011110000010010011000101 B.970TE+08 0.1657 | w09, 11010101 1110000010010011000101 B.F707E«08 0.1657
203 0100111110000100010000110711101 3,3352€+08 0.0000 | 200 (19,19) 26 110101011110000010010011000101 B,9707E<08 0. 1657
213 0011010111001101110710010000011 2.256TE+08 0.0000 | 21) (26,'7) 30 110010000101010100110111011110 8.4026E+08 0.0851
22) 000110011111000001100100110110 1.0BB0E+08 0.0000 | 22) (26,17) 30 110000111101000100011100100011 8.2132E+08 0.0686
23) 101111001000000011110110010001 7.F0464E+08 0.0459 | 23) (23, 1) 3 111000011001100000001111110001 9.4621E+08 0.2824
243 011101100001100010100101100111 &.9533E+08 0.0004 | 26) (23, 1) 3 101111001000000011110100010100 7.9044E+08 0.0449
25) 010110111010001101070001010010 3.B434E+08 0.0000 | 25) (27, 1) 10 170000011001100000101001110011 B, 1199E+08 0.04612
26) 110010000101010100110110011110 B.4026E+08 0.0841 | 26) (27, 1) 10 1070011000010101071001101110100 &.9660E+08 0.0132
27 101001100101110701001001100011 &.97TBE+08 0.0134 | 27y ¢ 1,17y 25 110010001001100000101111110100 8.4135E+08 0.0873
268) 100011110111010000100000110010 &,0147E+08 0.0031 | 28) ¢ 1,17y 25 111007111101000100011100100011 9.7231E+08 0.3707
29) 010010100010000100001101100011 3.1092E+08 0.0000 | 29) (1,79 23 110101010001100000101111110100 B.9378E+08 0.1597
303 001011001111001110010101100011 1.8854E+08 0.0000 | 30y ¢ 1,9 23 111000011110000000010011000101 9.4739€+08 0.2859

Note: Generation 1 & Aceumulated Statistics: max=0_ 8715, m=min=0.0132, awgs0.1732, sum=5.19867, nmutation=35, ncress= 10

YEEHEEE5888E80 o

FIGURE 3.16 SGA run, generation report f = 0-1.

greater than 0.2824. We have not only been unlucky on average, we have been
unlucky at the top. Despite the unfortunate initial depression of the population,
once the genetic algorithm gets started, it quickly finds good performance, as we
can see vividly after the first round of reproduction, crossover, and mutation. In
the first generation, a very good string is found with fitness 0.8715. As the run
continues, further improvement is found in both maximum and average popula-
tion fitness as demonstrated in Fig. 3.17. Toward the end of the run, a form of
convergence is observed as displayed in Fig. 3.18. In generation 7, if we scan up
and down the bit strings we notice that there is a fair amount of agreement at

74

Chapter 3 / Computer Implementation of a Genetic Algorithm

1.0
_—
Z 03
—
=& max
0.0 T T T T TH MT
1]] 2 3 4 5 6 7

generation number

FIGURE 3.17 SGA run, best-of-generation (max) results and generation aver-
age (avg) results to generation 7.

most bit positions. This has occurred even though we have not reached the best
point in the space; we have gotten close, however. In generation 6 an individual
has appeared with fitness f = 0.9807. This is near optimal but not optimal (this
point is in the top 0.19 percent of the points in the space). Convergent behavior
without guarantee of optimality bothers many people who approach genetic al-
gorithms from other, more traditional, optimization backgrounds. There are ways
to slow down this premature convergence, as it has been called, and we shall
look at some of these methods in this and later chapters; however, the fact of the
matter is that genetic algorithms have no convergence guarantees in arbitrary
problems. They do sort out interesting areas of a space quickly, but they are a
weak method, without the guarantees of more convergent procedures. This does
not reduce their utility. Quite the contrary, more convergent methods sacrifice
globality and flexibility for their convergence. Additionally, many methods are
limited to a narrow class of problem. As a result, genetic algorithms can be used
where more convergent techniques dare not tread. Moreover, if you are solving
problems where known local, but convergent, methods exist, the idea of a hybrid
scheme is natural. Start your search using a genetic algorithm to sort out the
interesting hills in your problem. Once the GA ferrets out the best regions, then
take your locally convergent scheme and climb the local peaks. In this way, you
can combine the globality and parallelism of the GA with the more convergent
behavior of the local technique. In 2 moment we will look at one practical way
of reducing the premature convergence problem through fitness scaling, First we
must devise techniques to transform arbitrary objective functions to proper fit-
ness function form.

Mapping Obijective Functions to Fitness Form 75
Populaticon Report
Generation & Generation 7

] string x fitness # parents xsite string X fitness
13 111100011010090010101111190007 1.0135E+09 0.5615 | 1 (8, & 7 1111110010110000001011 11000100 1.0599E«09 0.8779
2) 111111001000100010011111110011 1.0592E+09 0.8726 I 2) (B, 8) 7 1M1111001000000010011011101100 1.0591E+0% 0.8715
3) 1171111001000000010011911190100 1,0591E+09 0.8T1S | 3 9,28) g 111111001000000010011010100111 1.05ME+0% 0.8T15
&) 1111100111100000001017111100100 1.0481E+09 0. 7849 I &) (9,28) 2 1M11111101000000010000111110111 1.06TSE+0T 0.9430
5) 111111001101100001 101111010110 1.04805€+09 0.8834 | 5) ¢ 6,18) 3 1111011000001110101111100100 1,04833E+09 0.9070
&) 111111001011000000107111101100 1.0599€+09 0.87T9 | 6) (6,18) 3 111110001011000000111111101100 1,0431E+09 0.74B4
7y 11N119001001100000109111901100 1.0595E+09 0.874T | Ty (10,22 22 101110011100000010011111110111 7.7910€+08 0.0405
&) 111111001000000010011011000100 1.0591E+09 0.8T15 | B) (10,22) 22 111M11001111010000101111100100 1.04610€+09 0.8872
93 111111101000000010000011100111 1.08TSE«09 0.9430 | ?) €15,15) 30 111110011010000010011111110001 1.047T0E+09 0.7772
10y 111111001100000010011111110111 1.0601E+09 0.8801 | 103 ¢15,15) 30 111110011010000010011111111001 1,04T0E+09 0.7772
1) 111111001000000010011111110111 1.05ME+09 0.8T15 I 11) (12,12) 5 111111111000000000011111010001 1.07148+09 0.9807
12) 1II1NM01000000010011111110001 1.06TSE0R 0.9430 I 12} (12,12) 5 111111101000000010011111110001 1.04TSE+0% 0.9430
13} 111011011000000010000011000101 9. 9616E+08 0.4T24 | 13) (26,18) 15 111111001010000000101101110111 1,0596E+0% 0,8757
14) 111119001001190000101111110000 1.0595E+09 0.8752 I 14) (26,18) 15 111110010110000010101111100100 1.0440€+09 0.7694%
15) 111110011010000010011111110001 1.04TOE+D9 0.7772 | 153 (20, 1) 30 111111001000000010010011000101 1.0591E+0% 0.8715
16 111111001010000010101111100100 1.0595E+09 0.8758 | 16) (20, 1) 30 111100011010010010101111110001 1.01356+09 0.5415
173 111110011110000010110011101111 1.0481E+09 0.T850 | 17 ¢ 9,100 30 111111101000000010011011100111 1.067TSE+09 0.9430
18) 111111011000001110101111100100 1.0833E+09 0.9070 | 18) ¢ 9,10) 30 111111001100000010011111110111 1.0801E+0% 0.8801
19 111111001000000010011111110000 1.0591E+09 0.8T1S | 19 ¢ 3, B) % 11MIN011000000010011111110100 1.0833E+0% 0.9066
20) 111111001000000010010011000101 1.0591E+09 0.8T15 | 200 (3, B) 1 111111001000000010011011000100 1.0591E+0% 0.8T15
21) 111110011110000010101911190000 1.04B1E+0% 0. 7850 | 21) ¢ 1,26) & 111110010110000000001110110001 1.04460E+0% 0.7604
22) 101110011110010010101111100100 7. TR4PE«08 0.0408 | 22) ¢ 1,26) 8 111100011010010010101111111111 1. 0135E+09 0.5815
23) 111111101000000010011111110001 1.08TSE+09 0.9430 | 23) (18,20) 30 111011011000001110101111110100 9.9621E+08 0.4726
24) 1M1111001000000010011111110117 1.0501E+09 0.BT15 | 264) (18,200 30 111111001000000010010010000101 1.0591E+0% 0.8715
25) 111111111000000010011111100100 1.0T17E+0F 0.9807 | 25) (14,300 3 111111001001100000101111100000 1.0595E+09 0.8747
26) 111110010110000000101 111190111 1. 04E0E+09 0.7694 | 26) (14,30) 3 111111001001110000101111010100 1.059SE+09 0.8752
270 1111001001110001101111110000 1.059SE+09 0.8752 | 2Ty (23, 3) 18 111111001001000010011111110001 1.0593E+09 0.8736
28) 011110011000010010000011000101 5.0968E+08 0.000& | 28) (23, 3) 18 111111101100000010011111110100 1.0685E+09 0.9523
29) 111111001100000010011011110001 1.08601E+09 0.8801 | 29) (26, 2) 30 111111001000010010001111110111 1.0591E+09 0.8720
303 111111001001100000101111100100 1.0595E+09 0.8747 | 30) (26, 2) 30 111111001000100010011111110011 1,0592E+09 0.8726
Note: Generation 7 & Accumulated Stetistics: max=0.9807, min=0.0405, evg=0.8100, sum=24.2997, nmutation=201, ncross= T1

FIGURE 3.18 SGA run, generation report f =

MAPPING OBJECTIVE FUNCTIONS TO FITNESS FORM

In many problems, the objective is more naturally stated as the minimization of
some cost function g(x) rather than the maximization of some utility or profit
function u(x). Even if the problem is naturally stated in maximization form, this
alone does not guarantee that the utility function will be nonnegative for all x as
we require in fitness function (recall that a fitness function must be a nonnegative
figure of merit). As a result, it is often necessary to map the underlying natural
objective function to a fitness function form through one or more mappings.

76

Chapter 3 / Computer Implementation of a Genetic Algorithm

The duality of cost minimization and profit maximization is well known. In
normal operations research work, to transform a minimization problem to a max-
imization problem we simply multiply the cost function by a minus one. In ge-
netic algorithm work, this operation alone is insufficient because the measure
thus obtained is not guaranteed to be nonnegative in all instances. With GAs the
following cost-to-fitness transformation is commonly used:

S(x) = Cppe — g(x) when g(x) < Cuy,
=0 otherwise.

There are a variety of ways to choose the coefficient C,,,. C,,., may be taken as
an input coefficient, as the largest g value observed thus far, as the largest g value
in the current population, or the largest of the last & generations. Perhaps more
appropriately, C,, should vary depending on the population variance. We will
consider this last possibility in Chapter 4.

When the natural objective function formulation is a profit or utility function
we have no difficulty with the direction of the function: maximized profit or
utiliry leads to desired performance. We may still have a problem with negative
utility function u(x) values. To overcome this, we simply transform fitness ac-
cording to the equation:

f(x) = u(x) + Coa when u(x) + Cp > 0,
=0 otherwise.

We may choose C_;, as an input coefficient, as the absolute value of the worst u
value in the current or last k& generations, or as a function of the population
variance. We postpone further consideration of these possibilities to a later
chapter.

All this monkeying about with objective functions should arouse suspicion
about the underlying relationship between objective functions and fitness func-
tions. In nature, fitness (the number of offspring that survive to reproduction) is
a tautology. Large numbers of offspring survive because they are fit, and they are
fit because large numbers of offspring survive. Survival in natural populations is
the ultimate and only taskmaster of any import. By contradistinction, in genetic
algorithm work we have the opportunity and perhaps the duty to regulate the
level of competition among members of the population to achieve the interim
and ultimate algorithm performance we desire. This is precisely what we do
when we perform fitness scaling.

FITNESS SCALING

Regulation of the number of copies is especially important in small population
genetic algorithms. At the start of GA runs it is common to have a few extraor-
dinary individuals in a population of mediocre colleagues. If left to the normal
selection rule (pselect, = f/Zf), the extraordinary individuals would take over a

Fitness Scaling 77

significant proportion of the finite population in a single generation, and this is
undesirable, a leading cause of premature convergence. Later on during a run we
have a very different problem. Late in a run, there may still be significant diversity
within the population; however, the population average fitness may be close to
the population best fitness. If this situation is left alone, average members and
best members get nearly the same number of copies in future generations, and
the survival of the fittest necessary for improvement becomes a random walk
among the mediocre. In both cases, at the beginning of the run and as the run
matures, fitness scaling can help.

One useful scaling procedure is linear scaling. Let us define the raw fitness [
and the scaled fitness f*. Linear scaling requires a linear relationship between f
and f as follows:

f =af + b

The coefficients @ and b may be chosen in a number of ways, however, in all
cases we want the average scaled fitness f°, . to be equal to the average raw fitness
Juy because subsequent use of the selection procedure will insure that each av-
erage population member contributes one expected offspring to the next gen-
eration. To control the number of offspring given to the population member with
maximum raw fitness, we choose the other scaling relationship to obtain a scaled
maximum fitness, [., = C, . fop Where C, is the number of expected copies
desired for the best population member. For typical small populations (n = 50
to 100)aC,,, = 1.2 to 2 has been used successfully.

SCALED FITNESS

o fmin favg fmax
RAW FITNESS

FIGURE 3.19 Linear scaling under normal conditions.

78

Chapter 3 / Computer Implementation of a Genetic Algorithm

Toward the end of a run, this choice of C, stretches the raw fitness signifi-
cantly. This may in turn cause difficulty in applying the linear scaling rule as
shown in Fig. 3.19. As we can see, at first there is no problem applying the linear
scaling rule, because the few extraordinary individuals get scaled down and the
lowly members of the population get scaled up. The more difficult situation is
shown in Fig. 3.20. This type of situation is common in a mature run when a few
lethals (bad strings) are far below the population average and maximum, which
are relatively close together. If the scaling rule is applied in this situation, the
stretching required on the relatively close average and maximum raw fitness val-
ues causes the low fitness values to go negative after scaling. A number of solu-
tions are available to solve this problem; here, when we cannot scale to the
desired C,,,,, we still maintain equality of the raw and scaled fitness averages and
we map the minimum raw fitness [, to a scaled fitness [, = 0.

The simple scaling procedure may easily be added to the simple genetic al-
gorithm code through the use of three routines shown in Fig. 3.21: prescale, scale,
and scalepop. The procedure prescale takes the average, maximum, and mini-
mum raw fitness values, called umax, navg and umin, and calculates linear scal-
ing coefficients @ and b based on the logic described above. If it is possible to
scale to the desired multiple, €, (in the code it is called fimultiple), then that
is the computation performed. Otherwise, scaling is performed by pivoting about
the average value and stretching the fitness until the minimum value maps to
zero. The procedure scalepop is called after the preparation routine prescale to

2favg d
&
w
£ favg - R
o
[a)
e |
< 1 x
& 9 f 1
17,] avg ma

RAW FITNESS
Py [~ Negative fitness violates
nonnegativity requirement

FIGURE 3.20 Difficulty with linear scaling procedure in mature run. Points
with low fitness can be scaled to negative values.

Fitness Scaling 79

{ scale.sga: contains prescale, scale, scalepop for scaling fitnesses |

procedure prescale(umax, uavg, umin:real; var a, b:real);
{ Calculate scaling coefficients for linear scaling)

const fmulciple = 2.0; { Fitness multiple is 2)
var delta:real; | Divisor)
begin

if unin > (fmultiple*uavg - umax) / (fmultiple - 1.0) (Non-negative test)
then begin (Normal Scaling }
delta := umax - uavg;
a i= (fmultiple - 1.0) * uavg / delta;
b := uavg * (umax - fmultiplewuavg) / delta;
end else begin (| Scale as much as possible |
delta := uvavg - umin;
a := uavg / delcta;
b := -umin * uavg / delta;
end;
end;

function scale(u, a, b:real):real;
{ Scale an objective function value |
begin scale := a * u + b end;

procedure scalepop(popsize:integer; var max, avg, min, sumfitness:real;
var pop:populatien);
{ Scale entire population)
var j:integer;
a, bireal; { slope & intercept for linear equation)
begin
prescale(max, avg, min, a, b); [Get slope and intercept for function }
sumfitness := 0.0;
for j := 1 to popsize do with pop[j] do begin
fitness := scale(ocbjective, a, b);
sumfitness := sumfitness + fitness;
end;
end;

FIGURE 3.21 Scaling routines: procedure prescale, function scale, and pro-
cedure scalepop.

scale all the individual raw fitness values using the simple function scale. Here
we have assumed that the raw fitness values are stored in the individual record
in a real value called objective (pop|j| objective). The scaled fitness is placed in
the real parameter fitness, and the sum of the fitness values sumfitness is recal-
culated. Installation and testing of the scaling procedure is left as an exercise.

In this way, simple scaling helps prevent the early domination of extraordi-
nary individuals, while it later on encourages a healthy competition among near
equals. This does not complete our examination of the possible objective func-
tion transformations, and we shall return to some more examples in Chapter 4,
At the moment, we examine some of the coding options available to us in GA
work beyond the simple codings we have used thus far.

CODINGS

Chapter 3 / Computer Implementation of a Genetic Algorithm

We only have examined a very limited number of string coding alternatives for
mapping a finite-length string to the parameters of an optimization problem. We
have introduced a simple binary coding in response to a simple binary switching
problem. In this coding we have concatenated a string of 0's and 1's coding,
where the ith 0 (or 1) has meant that the ith switch is off (or on). We have also
decoded a binary string as an unsigned integer where the string A = qa,_, ...
a,a, has decoded to the parameter value x = Zg,-2'"'. Although these codings
have given us some flexibility, they do not provide the variety of options we
require to tackle the spectrum of problems we face in science, business, and
engineering. In this section, we examine two fundamental principles of genetic
algorithm coding to help guide our coding design in different problems. Later on
we will look at a multiparameter, mapped, binary string coding that has proved
and should continue to prove useful in a variety of problems.

In one sense, coding a problem for genetic search is no problem because the
genetic algorithm programmer is limited largely by his imagination. As we saw in
the last chapter, genetic algorithms exploit similarities in arbitrary codings as long
as building blocks (short, high-performance schemata) lead to near optima. In
another sense, this freedom of choice is a mixed blessing to the new user; the
array of possible coding alternatives is both invigorating and bewildering. Given
this freedom, how does a new user choose a good coding? Fortunately, genetic
algorithms are forgiving because they are robust, and in that sense there is usually
no need to agonize over coding decisions. Additionally, we offer two basic prin-
ciples for choosing a GA coding: the principle of meaningful building blocks
and the principle of minimal alpbabets

The principle of meaningful building blocks is simply this:

The user should select a coding so that short, low-order schemata
are relevant to the underlying problem and relatively unrelated
to schemata over other fixed positions.

Although this principle can be checked rigorously using the Walsh analysis men-
tioned in Chapter 2, this procedure is rarely practical and as a result, coding
design for meaningful building blocks is something of an art. Nonetheless, when
we design a coding we should check the distances between related bit positions.
Chapter 5 presents ways to rearrange the ordering of a string coding, as well as
several operators that search for good codings while they search for good
solutions.

The second coding rule, the principle of minimal alphabets, is simply stated:

The user should select the smallest alphabet that permits a natu-
ral expression of the problem.

Until now we have been almost obsessed with the idea of binary codings. Has
this been accidental or has there been method to our coding madness? That there
has been method can be best illustrated by returning to our tired but illustrative

Codings 81

TABLE 3.1 Comparison of Binary and Nonbinary String Populations

Binary String Value X Nonbinary String Fitness
01101 13 N 169
11000 24 Y 576
01000 8 1 64
10011 19 T 361

five-bit example started in Chapter 1. In Table 3.1, we see the same old four
binary strings with their same old fitness values (which we obtained by decoding
the strings as unsigned binary integers and thereby evaluated the fitness accord-
ing to the relation f(x) = x*). Recall that one of our original motivations for
considering schemata was the natural attempt to associate high fitness with sim-
ilarities among strings in the population. In the table, we also consider a nonbi-
nary coding. In fact, we consider an extreme example. Consider a one-to-one
mapping of the binary integers [0, 31] to the 32-letter alphabet consisting of the
26 letter alphabet {A—Z} and the six digits {1—6}, as shown in Table 3.2.

In the binary case, as we scan the list (Table 3.1), the hunt for important
similarities is made possible by the small cardinality of the alphabet. In the non-
binary case, as we scan the list we only have the four single-letter strings and
their fitness values; there are no coding similarities to exploit. This is surely an
extreme example, but the same principle holds true in less flagrant cases.

To see this a bit more mathematically, we should really compare the number
of schemata available in a binary coding to the number of schemata available in
a nonbinary coding. Of course, both the binary and nonbinary codings should

TABLE 3.2 Binary and Nonbinary
Coding Correspondence

Coding Correspondence Table

Binary Nonbinary
00000 A
00001 B
11001 Z
11010 1
11011

11111 6

Chapter 3 / Computer Implementation of a Genetic Algorithm

code the same number of alternatives; however, the different alphabet cardinali-
ties require different string lengths. For equality of the number of points in each
space, we require 2' = &' where / is the binary code string length and /' is the
nonbinary code string length. The number of schemata for each coding may then
be calculated using the respective string length: 3’ in the binary case and
(k& + 1) in the nonbinary case. It is easy to show that the binary alphabet offers
the maximum number of schemata per bit of information of any coding. Since
these similarities are the essence of our search, when we design a code we should
maximize the number of them available for the GA to exploit.

A MULTIPARAMETER, MAPPED, FIXED-POINT CODING

Our two principles give us some clues for designing effective codings for simple
genetic algorithms. They do not, however, suggest practical methods for coding
a particular problem. One successfully used method of coding multiparameter
optimization problems of real parameters is the concatenated, multiparameter,
mapped, fixed-point coding.

We have already considered an unsigned fixed-point integer coding; how-
ever, what happens if we are not very much interested in a parameter x € [0,
2']? One way to circumvent this apparent limitation is to map the decoded un-
signed integer linearly from [0, 2'] to a specified interval [U,, U,..]. In this way,
we can carefully control the range and precision of the decision variables. The
precision of this mapped coding may be calculated:

U — Um'm
"=
2 =1

SINGLE U, PARAMETER ¢, = 4

0000 —= Umn
1111 — Umax
others map linearly In between

MULTIPARAMETER CODING €10 parameters)

0001:01011 :11‘2!'.1:111.1]I
I | | !
I I I I

Yy : Ua Usg Ui

FIGURE 3.22 Multiparameter code constructed from concatenated, mapped,
fixed-point codes.

A Multiparometer, Mapped, Fixed-Point Coding 83

To construct a multiparameter coding, we can simply concatenate as many single-
parameter codings as we require. Of course, each coding may have its own sub-
length, its own U, and U, values, as represented in Fig. 3.22.

A set of coding routines that implements the concatenated, mapped, fixed-
point coding is presented in Fig 3.23. The single-parameter routine decode dis-

type parmparm = record | parameters of the parameter)
lparm: integer; | length of the parameter)
parameter, maxparm, minparm:real; (parameter & range]
end;
parmspecs = array[l..maxparms] of parmparm;

var parms:parmspecs;

procedure extract_parm(var chromfrom, chromto:chromosome;
var jposition, lchrom, lparm:integer);
| Extract a substring from a full string)
var j, jtarget:integer;
begin
J =1
jtarget := jposition + lparm - 1;
if jtarget > lchrom then jtarget := lchrom; (Clamp if excessive }
vhile (jposition <= jrargec) do begin
chromto(j] := chromfrom|jposition];
jposition := jposition + 1;
Ji=1+1;
end;
end;

function map parm(x, maxparm, minparm, fullscale:real):real;
(Map an unsigned binary integer to range [minparm,maxparm] }
begin map_parm := minparm + (maxparm - minparm)/fullscale*x end;

procedure decode_parms(var nparms, lchrom:integer;
var chrom:chromosome;
Var parms:parmspecs);
var j, jposition:integer;
chromtemp ;chromosome; { Temporary string buffer)
begin
j :=1; { Parameter counter }
jposition := 1; (String position counter)
repeat
with parms[j] do if lparm>0 then begin
extract_parm(chrom, chromtemp, jposition, lchrom, lparm);
parameter := map_parm{ decode{chromtemp, lparm),
maxparm, minparm, power(2.0, lparm)-1.0 });
end else parameter := 0.0;
=3 +1;
until j > nparms;
end;

FIGURE 3.23 Coding routines for use in SGA: procedure extract__parm, func-
tion map__parm, and procedure decode__parms.

84

Chapter 3 / Computer Implementation of a Genelic Algorithm

cussed earlier is used by the new routines to decode a subparameter string as a
binary unsigned integer. The procedure extract__parm removes a substring from
a full string, the routine map parm maps the unsigned integer to the range
[minparm, maxparm|, and the routine decode _parms coordinates the decoding
of all nparms parameters. The installation and testing of these procedures is left
as an exercise.

DISCRETIZATION

The discretization of a parameter optimization problem with real parameters is
not the only type of discretization that may be required to perform genetic al-
gorithm search. Many optimization problems, more properly optimal control
problems, have not just a single control parameter but rather a control function
that must be specified at every point in some continuum—a functional. To apply
genetic algorithms to these problems, they first must be reduced to finite param-
eter form before parameter coding may take place.

This form of discretization may be illustrated easily with an example. Suppose
we wish to minimize the time of travel of a bicycle between two points, and
suppose further that we can apply a force f as a function of time f(f) between
limits | f(#) | = f,u In this continuous optimal control problem, we would
attempt to calculate the schedule of force application as a continuous function of
time as illustrated in Fig. 3.24. With a genetic algorithm, since we must deal with
finite-length structures, we first reduce the continuous problem to a finite num-
ber of parameters and then further reduce the finite parameters to string form
through some coding process.

continuous

[) A

to

FIGURE 3.24 Discretized force control schedule.

CONSTRAINTS

Constraints 85

The discretization of the continuum we require is more usually associated
with topics like discrete control, interpolation, and finite elements. In the bicycle
control problem, one way to discretize the continuous schedule into a finite pa-
rameter representation is by spacing force values f, at regular intervals of time.
We then assume some functional form, step function, linear interpolant, piece-
wise quadratic, or cubic spline, to fit through the points f,. Figure 3.24 shows a
linear interpolating function approximation to the continuous force schedule of
the bicycle control problem.

Thus far, we have only discussed genetic algorithms for searching unconstrained
objective functions. Many practical problems contain one or more constraints
that must also be satisfied. In this section, we consider the incorporation of con-
straints into genetic algorithm search.

Constraints are usually classified as equality or inequality relations. Since
equality constraints may be subsumed into a system model—the black box—we
are really only concerned with inequality constraints. At first, it would appear
that inequality constraints should pose no particular problem. A genetic algo-
rithm generates a sequence of parameters to be tested using the system model,
objective function, and the constraints. We simply run the model, evaluate the
objective function, and check to see if any constraints are violated. If not, the
parameter set is assigned the fitness value corresponding to the objective func-
tion evaluation. If constraints are violated, the solution is infeasible and thus has
no fitness. This procedure is fine except that many practical problems are highly
constrained; finding a feasible point is almost as difficult as finding the best. As a
result, we usually want to get some information out of infeasible solutions, per-
haps by degrading their fitness ranking in relation to the degree of constraint
violation. This is what is done in a penalty method

In a penalty method, a constrained problem in optimization is transformed
to an unconstrained problem by associating a cost or penalty with all constraint
violations. This cost is included in the objective function evaluation. Consider,
for example, the original constrained problem in minimization form:

minimize g(x)
subjectto b{x)=0 i=12,...n
where x is an m vector
We transform this to the unconstrained form:

minimize g(x) + r-i‘l’[b,(#)l

=1
where @-—penalty function,
r—penalty coefficient.

Chapter 3 / Computer Implementation of a Genetic Algorithm

A number of alternatives exist for the penalty function ®. In this book, we usually
square the violation of the constraint, ®[b{x)| = b{ (x), for all violated con-
straints £ Under certain conditions, the unconstrained solution converges to the
constrained solution as the penalty coefficient r approaches infinity. As a practical
matter, r values in genetic algorithms are often sized separately for each type of
constraint so that moderate violations of the constraints yield a penalty that is
some significant percentage of a nominal operating cost.

SUMMARY

This chapter has unveiled some of the genetic algorithm's mystery, through
careful examination of the data structures, procedures, and details necessary to
implement a practical, yet simple, genetic algorithm. Specifically, we have imple-
mented a bare-bones genetic algorithm called the simple genetic algorithm
(SGA), written in Pascal programming language for execution on commonly
available microcomputers.

As might be expected, the primary data structure of the simple genetic al-
gorithm is the string population. The SGA formulation uses two nonoverlapping
populations to make birth and replacement as easy as possible. The populations
themselves consist of an array of individuals that contain the bit strings, the de-
coded parameter, and the fitness function value along with other important aux-
iliary information.

The primary work of the SGA is performed in three routines, select, crossover,
and mutation. Select performs simple stochastic selection with replacement,
what we have been calling roulette wheel selection. Crossover and mutation per-
form their namesake operations as described in Chapter 1. Their action is coor-
dinated by a procedure called generation that generates a new population at each
successive generation.

After building SGA we have tested it in a small run on a simple function,
flx) = c-x'. While concrete conclusions are impossible on a single trial of a
stochastic process, the GA does find near optimal results quickly after searching
a small portion of the search space.

Various details of implementation have also been discussed. Objective-to-
fitness transformations have been examined to convert normal objective func-
tion formulations, whether maximization or minimization formulations, to proper
fitness function form. Additionally, fitness scaling has been suggested for main-
taining more careful control over the allocation of trials to the best strings.

Some of the issues underlying the coding problem have been examined. The
principle of minimal alpbabets and the principle of effective building blocks
have been laid down to help the GA user design more effective codings. A coding
that has been useful in a number of problems has been presented in Pascal com-
puter code form. This coding, the multiparameter, mapped, fixed-point coding,
should be useful in many parameter optimization problems.

Problems a7

The need for discretization is not restricted to that imposed by codings. Many
practical optimization problems require the specification of a control function or
functions over a continuum. These optimization problems—more properly, op-
timal control problems—must first be reduced to finite parameter problems,
which may in turn be discretized by the coding procedure discussed in this chap-
ter, Discretization of this type is performed by selecting appropriate interpolation
functions (often linear interpolation will suffice) and the parameters associated
with the chosen interpolation form are then coded into a concatenated, finite-
length bit string.

Last, we have recognized the need for special methods to adjoin inequality
constraints to a problem. Genetic algorithms are naturally cast as an uncon-
strained search technique. After all, nature tries and tries again, only finding the
constraints of its environment through the survival or death of its trials, Similarly,
genetic algorithms must have fitness functions that reflect information about both
the quality and the feasibility of solutions. Exterior penalty methods have been
used successfully in a number of problems. With these methods, whenever a con-
straint is violated, the unconstrained objective function value is penalized by an
amount related to a function of the constraint violation.

The examination of concrete code examples and a number of implementa-
tion issues has made GAs more accessible for our use in practical scientific, en-
gineering, and business problems. In the next chapter, we look at a number of
early and current applications of straightforward genetic algorithms.

B PROBLEMS

3.1. Consider the fitness function f{x) = x" on the interval x € [0, 1]. Calculate
the expected population average of a randomly selected population of points.
Calculate the probability of selecting a point f > f,. Compare numerical values of the
population average for n = 2 and n = 10. Compare probabilities of selecting one
point f > 0.9 for the same two exponents.

3.2. A search space contains 2,097,152 points. A binary-coded genetic algorithm
is compared to an octal-coded genetic algorithm. Calculate and compare the fol-
lowing quantities in the two cases, binary and octal:

a) Total number of schemata

b) Total number of search points

¢) Number of schemata contained within single individual

d) Upper and lower bounds on number of schemata in population of size
n =150

3.3. A function of three variables, f(x, 3 z) is to be minimized, The x variable
is known to vary between — 20.0 and 125.0, the y variable is known to vary
between 0 and 1.2(10°%), and the z variable is known to vary between — 0.1 and

Chapter 3 / Computer Implementation of a Genetic Algorithm

1.0. The desired precision for x, 3 and z are 0.5, 107, and 0.001 respectively.
Design a concatenated, mapped, fixed-point coding for this problem. What is the
minimum number of bits required to obtain the desired precision? With the se-
lected coding, determine the bit strings that represent each of the following
points: (=20,0,-0.1),(125.0, 1.2E6, 1.0), (50, 100000, 0.597).

B COMPUTER ASSIGNMENTS

A. Install the scaling routine of Fig. 3.21 in the simple genetic algorithm (5GA)
code and reproduce the experiment on function f(x) = ¢x'’. Compare and con-
trast the results obtained with and without scaling installed.

B. Test the multiparameter, mapped, fixed-point coding routines of Fig. 3.23 on
a three-parameter problem with parameter maximums, minimums, and substring
lengths as follows:

Max, = 20, 100, 300
Min, = —10, =5, 0
Length, = 5, 10, 15

Test the coding routine on the all-O string, the all-1 string, and the string
010101...0101. Check the computer calculation with a hand calculation. Also de-
termine the precision of each of the subcodes within the coding. After testing,
install the routines in the SGA code with appropriate initialization procedures.

C. Minimize the function f(x, % 2) = x* + 3* + 2% where x, 3 and z are
permitted to vary between — 512 and 512. Use a 10-bit coding for each substring
(this is De Jong’s function F1).

D. Improve the efficiency of the selection procedure by implementing a binary
search using cumulative selection probability distribution values.

E. Implement and test a routine to perform mutation as a mutation clock. (Hint:
Use an exponential distribution and calculate the time until next mutation.)

F. Implement a coding routine to implement a floating-point code with speci-
fied mantissa and exponent.

G. Compare the performance of a binary-coded genetic algorithm to a nonbi-
nary-coded genetic algorithm. Specifically, compare the performance of a binary-
coded GA on the fitness function of this chapter f(x) = x' to an octal-coded GA
on the same problem. Use a 30-bit code and a 10-position octal code {0, 1, 2, 3,
4, 5, 6, 7}. Compare and contrast the rate of convergence and ultimate conver-
gence under both codings.

Some Applications of
Genetic Algorithms

To paraphrase a popular quip, “If GAs are so smart, why ain't they rich?” In fact,
genetic algorithms are rich—rich in application across a large and growing num-
ber of disciplines. This chapter presents a cross section of genetic algorithm ap-
plications from old to new, from pure to applied, in fields as diverse as
mathematics, medicine, engineering, and political science. Our aim is threefold.
First, we seek historical perspective to better understand why the state of genetic
algorithm art has arrived at its current position. Second, having dipped our toes
into a puddle of computer code in the previous chapter, here we stroke our way
past the applications of others to learn the practical side of the applications busi-
ness. Last, by examining the diverse application of GAs, we continue to amass
evidence in support of our earlier claims of genetic algorithm robustness: their
diversity of application and the efficiency of operation are virtually unparalleled
in the annals of blind search.

The survey of genetic algorithm applications starts with a review of early
computer simulations of natural genetics and other signs of GA prehistory. After
reviewing several early applications, from Bagley's pioneering dissertation to
De Jong’s pivotal work in pure function optimization, we investigate a potpourri
of current applications drawn from engineering, medicine, and social science.

THE RISE OF GENETIC ALGORITHMS

Prior to the use of genetic algorithms for search in artificial systems, a number of
biologists used digital computers to perform simulations of genetic systems (Bar-
ricelli, 1957, 1962; Fraser, 1960, 1962; Martin and Cockerham, 1960). Although

Chapter 4 / Some Applications of Genetic Algorithms

these studies were aimed at understanding natural phenomena, Fraser's work was
not too distant from the modern notion of a genetic algorithm. His work on ep-
istasis considered a phenotype function as follows:

Phenotype = a + ga|a| + ca'

In this work a 15-bit string of 0's and 1's was decoded where five bits on a bit
string decoded to the a parameter, five bits decoded to the g parameter, and five
bits decoded to the ¢ parameter. Fraser showed the interaction of the different
parameters in the series of graphs recreated as Fig. 4.1. Selection in his simula-
tions was performed by allowing genotypes (strings) with phenotype values
(function values) between specified limits (= 1 to + 1) to be chosen as parents.
Fraser simulated the evolution of future string generations and calculated the
percentage of individuals with acceptable phenotypes with successive genera-
tions. The results of his computer simulations are shown in Fig. 4.2.

While these results look something like function optimization, there was no
recognition in Fraser's writing that nature's search algorithm of choice might be
useful in artificial settings. It remained for Holland and his students to apply ge-
neticlike operators to artificial problems in adaptation. Holland laid the founda-
tion for these applications with his writings on adaptive systems theory (Holland,
1962a—c). His goals were broad, as we see from the following early quotation
(Holland, 1962c, p. 298):

The study of adaptation involves the study of both the adaptive system
and its environment. In general terms, it is a study of how systems can
generate procedures enabling them to adjust efficiently to their environ-
ments. If adaptability is not to be arbitrarily restricted at the outset, the
adapting system must be able to generate any method or procedure ca-
pable of an effective definition.

These are not the writings of a man simply looking for yet another method of
solving this or that optimization problem. Holland’s goal then as now was to de-
velop the theory and procedures necessary for the creation of general programs
and machines with unlimited capability to adapt to arbitrary environments. At
the same time, Holland recognized the fundamental role of unnatural selection—
an artificial survival of the fittest—in whatever programs and machines one might

design (p. 300):

Adaptation, then, is based upon differential selection of supervisory pro-
grams. That is, the more “successful” a supervisory program, in terms of
the ability of its problem-solving programs to produce solutions, the
more predominant it is to become (in numbers) in a population of su-

pervisory programs.

Not only did Holland recognize the need for selection, he also unambiguously
endorsed a populations approach to search rather than the single-structure-by-
single-structure approach so prevalent in the literature. It is interesting to note
that in these earliest adaptive systems writings, Holland only hinted at the im-

The Rise of Genetic Algorithms 9N

T Q=10:C=00

JQ=00:C=09

—

Q=00:C=10

e

ype

FIGURE 4.1 Sketch of Fraser’s epistatic function (1962). Reprinted by permis-
sion from Journal of Theoretical Biology, vol. 2, 1962 by Academic Press London
Ltd.

Percentage of individuals with “acceptablé’ phenotypes
Average deviation from original gene frequencies

160 parents
1 ! 1 1 1
0 10 20 30 40 50 0 10 20 30 40 50

FIGURE 4.2 Results of genetic simulation on Fraser’s epistatic function varying
population size (1962). Reprinted by permission from Journal of Theoretical Bi-
ology, vol. 2, 1962 by Academic Press London Litd.

92 Chapter 4 / Some Applications of Genetic Algorithms

portance of crossover or other recombinant genetic operators. The first direct
written acknowledgment of the importance of these other operators came three
years later (Holland, 1965, p. 216):

There are, however, more general techniques than Samuel’s for generat-
ing successive trials of functions over a basis set. Given any basis set,
these techniques, closely related to the interacting phenomena of cross-
over, linkage, and dominance in genetic systems, yield strict near opti-
mality over a much broader class of environments.

During this nascent period (1962—-1965), Holland taught courses in adaptive sys-
tems at the University of Michigan. His students in these courses wrote simula-
tions of genetic adaptive algorithms applied to both natural and artificial systems;
unfortunately, written records of many of these efforts have been lost. We do
know that reproduction, crossover, and mutation were in use during this period
in much the same form as that used today. We shall soon examine those incubated
infants that made it to dissertation adulthood. Holland’s own work followed his
early, more speculative, efforts by placing the theory of genetic adaptive systems
on mathematical terra firma (Holland, circa 1966, 1967, 19G69a, 1969¢). The im-
portant theory of schemata was in place around the turn of the decade (Holland,
1968, 1971) with important results linking reproductive plans and the k-armed
bandit problem following shortly thereafter (Holland, 1973a, 1975).

GENETIC ALGORITHM APPLICATIONS
OF HISTORICAL INTEREST

Bagley and Adaptive Game-Playing Program

The first mention of the words “genetic algorithm” and the first published appli-
cation of a genetic algorithm both came in Bagley's (1967) pioneering disserta-
tion. At the time there was a great deal of interest in game-playing programs, and
in that spirit, Bagley devised a controllable test bed of game-playing tasks mod-
cled after the game of hexapawn. Hexapawn is played on a chessboard cut down
to 3 X 3 squares (see Fig. 4.3). Each opponent starts with three pawns and tries
to reach the other side. By adjusting the caliber of opponent, Bagley was able to
control the nonlinearity of the task (he called this “task depth”).

Bagley constructed genetic algorithms to search for parameter sets in game
evaluation functions and compared them to correlation algorithms, learning pro-
cedures modeled after the weight-changing algorithms of that period (see Fried-
berg, 1958; Samuel, 1959; Uhr and Vossler, 1961). Not surprisingly, Bagley found
that the correlation algorithms required a good match between the nonlinearity
of the game and the nonlinearity of the correlation algorithm. On the other hand
Bagley's genetic algorithm was insensitive to game nonlinearity and performed
well over a range of environments (task depths).

Genetic Algorithm Applications of Historical Interest 93

FIGURE 4.3 Sketch of hexapawn board.

Bagley's genetic algorithm was not unlike the genetic algorithms we use to-
day, He constructed reproduction, crossover, and mutation operators similar to
those described in the previous chapter; in addition, he used diploid string rep-
resentations, dominance, and inversion. (The next chapter says more about these
advanced operators.) Additionally, Bagley used nonbinary alphabets in coding
strings. As we know from our previous study of schemata, there is good reason
to use minimal alphabets. Bagley did not have access to Holland’s theory of sche-
mata, and as a result, his work could not be guided by it.

One area where Bagley's work foreshadows more modern research is in the
area of reproduction and selection. Bagley was keenly aware of the need for ap-
propriate selection rates at the beginning and the end of genetic algorithm runs,
He introduced a fitness scaling mechanism to do two things: reduce the selection
early in a run, thereby preventing domination of a population by a single super-
individual, and increase the selection later in a run, thereby maintaining appro-
priate competition among highly fit and similar strings near population
convergence. Similar procedures have been adopted by current researchers.

Bagley also introduced the first notion of genetic algorithm self-regulation in
what he called self-contained controls. He suggested coding the crossover and
mutation probabilities within the chromosomes themselves; he did not present
any computer simulation results of experiments with this mechanism, however.

Rosenberg and Biological Cell Simulation

Working at the same time as Bagley, Rosenberg (1967) also investigated genetic
algorithms in his early doctoral dissertation. Because he emphasized the biolog-
ical and simulation aspects of his work, his contributions to the art of genetic

9

Chapter 4 / Some Applications of Genetic Algorithms

algorithms are sometimes overlooked. In his study Rosenberg simulated a popu-
lation of single-celled organisms with a simple yet rigorous biochemistry, a
permeable membrane, and classical genetic structure (one gene, one enzyme),
Despite his biological emphasis, Rosenberg’s work was important to the subse-
quent development of genetic algorithms in artificial applications because of its
resemblance to optimization and root-finding. We won't go into the details of his
chemical kinetics models here; however, some of the genetic details are of inter-
est. Rosenberg defined a finite-length string with a pair of chromosomes (diploid
representation). In his studies the string length was limited to 20 genes, with a
maximum of 16 alleles permitted per gene. He defined chemical concentrations
x; and desired chemical concentrations X, He also defined a set of desired chem-
ical concentrations as a property Mating and selection were then performed ac-
cording to the antifitness function (for the 7th property):

fi=2 (x — %P
T

where the sum is taken over all chemicals in the ith property. Rosenberg calcu-
lated the inverse of the f, quantities and performed mating and subsequent repro-
duction according to this inverse antifitness. In all of his simulations, he actually
only considered a single property (i = 1), and as a result, passed up the chance
to perform the first multiobjective genetic algorithm, a task later taken up by
Schaffer (1984). His simulations were, however, the first application of genetic
algorithms to a root-finding task; when properly viewed, searching for cells that
minimize the antifitness function is equivalent to solving the highly nonlinear
equation represented by the chromosome and cell biochemistry to obtain a par-
ticular property.

Like that of Bagley, Rosenberg's work preceded Holland's theory of schemata,
and as a result he too adopted nonbinary alphabets. Like Bagley, Rosenberg was
also concerned with inventing some means of keeping the selection process ap-
propriately competitive. To do this, he adopted what he called the offspring gen-
eration function (OGF). He defined a quantity s that was related to the
normalized antifitness of the offspring’s parents, f,/f. Using this s quantity, he re-
produced the number of offspring according to the the OGF shown in Fig. 4.4.

Another interesting aspect of this work is its adaptive crossover scheme. Each
gene contained so-called linkage factors x; carried along with the allele values. In
this implementation, integer linkage factors between 0 and 7 piggybacked each
of the alleles and were reproduced during selection and crossed during crossover
with their respective allele values. Instead of choosing the crossing site uniformly
at random, Rosenberg selected a crossing site determined by the probability dis-
tribution defined over the linkage factors:

pl’ = X '{E‘Ja

Here the p, represents the probability of a cross at site i Rosenberg gave an
example where tight linkage was important for discovering good results; indeed,

Genetic Algorithm Applications of Historical Interest 95

6
5 4

Offspring 4

Count

3
2
1
0 . B
00 05 10 15

FIGURE 4.4 Offspring generation function (OGF). After Rosenberg (1967).

the linkage factors adjusted to provide the tight linkage during the course of a
simulation.

Cavicchio and Pattern Recognition

Following the groundbreaking efforts of Bagley and Rosenberg, other genetic al-
gorithm applications were a few years in the making. In his 1970 study, “Adaptive
Search Using Simulated Evolution,” Cavicchio applied genetic algorithms to two
problems of artificial search: a subroutine selection problem and a pattern rec-
ognition problem. Because of its size and connection to problems of current in-
terest, we consider his pattern recognition problem in more detail.

Actually, Cavicchio did not tackle the pattern recognition problem directly.
Rather, he applied a genetic algorithm to the design of a set of detectors for a
pattern-recognizing machine of known architecture. To understand what is meant
by the “design of a set of detectors,” we need to have a better picture of the
pattern-recognizing machine he used.

Cavicchio adopted the pattern-recognition scheme of Bledsoe and Browning
(1959). In this early scheme an image is digitized on a 25 X 25 grid, forming
625 picture elements (pixels) where each pixel is a binary pixel, only capable of
discriminating between two shades, light and dark (no gray shades). A set of
specified feature detectors is chosen where each detector is itself a subset of the
pixels. During a training phase, known images from named classes are presented
to the recognition machine and lists of detector states are stored and associated
with image class names. During the recognition phase, an unknown image is pre-
sented to the recognition device and a simple match score is calculated. A list of
the ranked image class names is then constructed for the unknown image. Al-

26

Chapter 4 / Some Applications of Genetic Algorithms

though the mechanism itself is quite simple, the scheme can work well only when
a meaningful set of detectors is chosen for a particular problem (in this case a
character recognition problem). Thus, good operation of the Bledsoe and Brown-
ing device is reduced to the problem of finding a good set of detectors. Cavicchio
applied his genetic algorithm to precisely this detector design problem.

To do this, Cavicchio permitted an average of 110 detectors per device (a
particular design) with berween two and six pixels per detector. Chromosomes
(strings) were coded as alternating groups of positive and negative integers. For
example, under his coding scheme the partial chromosome

+5 +372 +9 -518 -213 -35 -76 +44 +348 .

specifies pixels 5, 372, and 9 in the first detector, pixels 518, 213, 35, and 76 in
the second detector, and so on. In passing, we note the use of a high-cardinality
alphabet and the unusual variable gene structure. We also infer that a very large
space was being searched in this problem. To compare this problem to binary-
coded genetic algorithm problems, let’s approximate the number of bits required
to code this problem using a binary alphabet. Assuming an average of 110 detec-
tors and four pixels per detector, this problem could be coded by a binary string
of the following length:

[= 110logJ(°P)] = 3581.

This is still one of the largest problems ever attempted by any genetic algorithm.

In his genetic algorithm, Cavicchio permitted reproduction and crossover
much as we use them today. He tried several selection (reproduction) operators
and finally settled on one that rewarded highly fit individuals without permitting
them to take over a high percentage of the available population slots. His simple
crossover operator is similar to the one described in earlier chapters, except that
cross sites are permitted to fall only berween detector boundaries (between al-
ternating groups of positive and negative numbers). Because of the variable gene
structure and because of the high-cardinality alphabet, Cavicchio was forced to
invent three mutation operators:

Mutation, Change a single pixel within a detector.
Mutation, Change all pixels within a detector.
Mutation, Change pixel associations between adjacent detectors.

He also permitted inversion, two-point crossover, and intrachromosomal dupli-
cation, but more will be said about these advanced operators in the next chapter.

One innovative mechanism adopted in this study was a so-called preselection
scheme. Here, a good offspring replaced one of its parents in the hope of main-
taining population diversity. Maintenance of diversity was a problem because of
the small populations Cavicchio was forced to use (usually between 12 and 20),
The preselection scheme seemed to help. A similar scheme was later adopted
successfully by De Jong (1975) in an optimization study.

Cavicchio, like Bagley, was enamored of the idea of adapting the parameters
of his adaptive algorithm; however, instead of coding the probabilities of cross-

Genetic Algorithm Applications of Historical Interest 97

TS5
w
H
g 50
i .-_.-" —J/-‘J‘—-“-—.‘_.__ — e —
ﬁ A

f— == The Conirgl Experiment
3 anday comeneres Ay Initiol Reproductive Pion
25 — A Improved Reproductive Plon
|

300 600
NUMBER OF DEVICES TESTED

FIGURE 4.5 Comparison of three different adaptive schemes for image detector
selection. From Cavicchio (1970).

over and mutation within the chromosome itself as Bagley suggested, Cavicchio
used global rate of improvement data to adjust the operator parameters centrally.
The scheme he adopted was very much like other weight-changing algorithms
popular at that time, and we do not consider the details further.

Instead, it is important to pause and question the propriety of using central-
ized data in any adaptation algorithm borrowed from natural genetics. In a bio-
logical population, where are the wires, all-knowing intelligence, or deity
necessary to twiddle parameters in a central fashion? Even if we admit the exis-
tence of central authority, what algorithm adjusts the control parameters of the
central controller? Both of these questions are elegantly answered in biological
systems by coding the control parameters within the chromosome itself. If we
follow nature’s lead and do the same thing in our artificial systems, in one fell
swoop we eliminate the need for central control and avert the dilemma of infinite
regress.

Despite the philosophical inconsistency of centralized control in genetics-
based search, Cavicchio was able to show some advantage for central adaptation
of the adaptation parameters as compared to simulations where the parameters
were held constant. He compared the performance of his basic genetic algorithm
(labeled “An Initial Reproductive Plan™), an improved scheme with the parameter
adaptation mechanism and other bells and whistles (labeled “An Improved Re-
productive Plan™), an adaptive scheme based on Klopf's (1965) method (labeled
“The Control Experiment”), and a random search (labeled “3 Standard Devia-
tions”). These results are summarized in Fig. 4.5. In this figure, the performance
measure (maximum performance = 100) is plotted versus the number of devices
sampled (number of detector combinations tried). Both genetic algorithms outper-
form the nongenetic adaptive scheme and the random search.

98

Chapter 4 / Some Applications of Genetic Algorithms

Weinberg, Cell Simulation, and Metalevel
Genetic Algorithms

Contemporaneously with Cavicchio, Weinberg was concluding his dissertation
study (1970), “Computer Simulation of a Living Cell" Like Rosenberg's earlier
work, Weinberg's contribution to the state of genetic algorithm art is sometimes
forgotten because of its emphasis on biological simulation; however, Weinberg
did pose in detail—but did not simulate—an interesting problem of genetic al-
gorithm optimization. In his sixth chapter, titled “Computer Simulation of Evolvy-
ing DNA," Weinberg proposed the use of a multilayered genetic algorithm to
select a good set of 15 rate constants that controlled the workings of different
simulated Escherichia coli cells. Like Rosenberg, Weinberg wanted the chromo-
somes to adapt so the cells' chemical composition matched the chemicals
available,

To achieve this, Weinberg proposed coding the 15 rate constants on a string
where each of the constants was allowed to vary between 10~% and 10° Cross-
over and inversion were enforced at parameter boundaries, and like other studies
of the time, nonbinary coding required the design of a complex mutation oper-
ator (Weinberg called his operator directed mutation).

Like Bagley and Cavicchio, Weinberg could not resist the alluring siren song
of GA parameter self-adaptation; however, Weinberg proposed doing this adap-
tation in a manner strikingly different from either the Bagley or Cavicchio
schemes. Specifically, Weinberg suggested the use of a genetic algorithm to adapt
the parameters of the lower level genetic algorithm. Weinberg called the upper
level GA a nonadaptive genetic program, and he called the lower level GA an
adaptive genetic program (its parameters are adapted). The relationships be-
tween the two genetic algorithms and the cell simulation are shown in the block
diagram of Fig. 4.6. In the proposed scheme, a population of 10 strings coded to
represent the crossover, inversion, and mutation probabilities would undergo se-
lection, crossover, and mutation. Those parameters would be passed down to the
nonadaptive genetic program, which in turn would generate and test populations
(size 40) of rate constants to be used for subsequent cell simulation. Rate of
improvement data would then be passed back up to the higher level GA to eval-
uate the population of GA parameters for subsequent high-level adaptation. Wein-
berg was aware that the need for centralized information in his scheme was
equivalent to postulating the intervention of omniscient, omnipotent authority
(1970, p. 101):

We calculate the utility of an adaptive genetic-program indirectly, by us-
ing a god-like judge, the non-adaptive genetic program. The non-adaptive
genetic program calculates the utility of an adaptive genetic-program by
judging the population which has evolved under the direction of the
adaptive genetic-program. It calculates a utility for the best string in
the adaptive genetic-program'’s population. This is the utility awarded to
that adaptive genetic-program. After each adaptive genetic-program has
awarded a utility, the non-adaptive genetic-program directs the evolution
of the population of adaptive genetic-programs.

Genetic Algorithm Applications of Historical Interest 99

NON-ADAPTIVE
GENETIC PROGRAM
(meto-level)
n=10
GA frt::ss
parameters Ga
ADAPTIVE
GENETIC PROGRAM
n=40
cell friness
rate of
constants cells
THREE
CELL
ENVIRONMENTS

FIGURE 4.6 Schematic of multilevel genetic algorithm as suggested by Wein-
berg (1970).

As a biologist, Weinberg was probably bothered by the need for godlike interven-
tion in his scheme. Although Weinberg described the simulation methods at great
length, he did not present results from simulations of this system in his disserta-
tion. The implementation of metalevel genetic algorithms would have to wait for
the work of Mercer (1977) and Grefenstette (1986).

Hollstien and Function Optimization

The first dissertation to apply genetic algorithms to a pure problem (really a set
of 14 problems) of mathematical optimization was Hollstien’s (1971) work. The
title of the dissertation, “Artificial Genetic Adaptation in Computer Control Sys-
tems,” is something of a misnomer, implying the application of a genetic algo-
rithm to digital feedback control of some engineering plant. Although Hollstien
alluded to that possibility, the work was concerned with optimizing functions of
two variables (z = flxy)) using dominance, crossover, mutation, and numerous
breeding schemes based on traditional practices of animal husbandry and
horticulture.
Hollstien investigated five different selection methods:

Progeny testing Fitness of offspring controls subsequent breeding of
parents.

Individual selection Fitness of individual controls future use as parent.

Family selection Fitness of family controls use of all family members
as parents.

Within-family selection Fitness of individuals within a family controls selec-
tion of parents for breeding within family.

Combined selection Two or more of the other methods combine.

Chapter 4 / Some Applications of Genetic Algorithms

He considered eight methods of mating preference:

Random mating All mates are equally likely to mate with one
another.

Inbreeding Related parents are intentionally mated.

Line breeding A uniquely valuable individual is bred with a

base population and their subsequent offspring
selected as parents.

Outbreeding Individuals with markedly different phenotypic
characteristics are selected as parents,

Self-fertilization An individual breeds with itself.
Clonal propagation An exact replica of an individual is formed.
Positive assortive mating Like individuals are bred

individuals.

Negative assortive mating Unlike individuals are bred.

To test the effects of the different selection and mating schemes, Hollstien
simulated different combinations of the 5 selection and 8 preference strategies
on 14 functions of two variables. In all of Hollstien's computer runs, the strings
were coded as 16-bit binary strings where two 8-bit parameters were decoded as
either an unsigned binary integer or a Gray-coded integer. A table of 4-bit Gray
codes is shown as Table 4.1, where we notice that adjacent integers differ by a
single bit (a Hamming distance of 1). This adjacency property is a general char-

TABLE 4.1 Comparison of
Binary-Coded and Gray-

Coded Integers
Integer Binary Gray
] 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 o111
6 0110 0101
7 o111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001

W

1111 1000

with other

Genetic Algorithm Applications of Historical Interest 101

acteristic of the Gray codes. Hollstien also discussed the possible use of hash
codes (where one of the (2)! coding permutations is generated and repeatedly
used), but he did not give a practical demonstration. Regardless of the coding
scheme used, Hollstien linearly mapped the resulting integer to the real interval
[0, 100].

In all genetic algorithm runs, Hollstien used populations of 16 strings. He
tested various combinations of mating and breeding plans and finally settled on
a recurrent inbreeding and crossbreeding plan as the most robust of the schemes
he tried. He also claimed some benefit for using Gray codes rather than unsigned
binary integers, and he attributed their relative success to the adjacency property
and the small perturbation caused by many single mutations, In drawing conclu-
sions from his work, he acknowledged the problems associated with using such
a small population size (n = 10) and recommended larger population sizes for
future studies.

Frantz and Positional Effect

Frantz (1972) took this advice and used larger population sizes (n = 100) and
string lengths (/ = 25) in his subsequent study of the effect of positional nonlin-
earities (epistasis) in genetic algorithm optimization. He constructed combined
linear-nonlinear functions over binary haploid chromosomes and studied the po-
sition effects (linkage) of several functions where the chromosome ordering was
changed to affect the length of particular building blocks. In his initial work, he
used roulette wheel selection, simple crossover, and simple mutation to compare
the effects of good and bad string orderings. He was able to demonstrate a cor-
relation between tight linkage and rate of improvement. For the functions he
considered, once the algorithms converged, however, there was no significant
performance difference berween simulations with good and bad orderings. This
occurred because the functions he chose were insufficiently difficult to test the
linkage hypothesis, a result of short string lengths and the weak nonlinearities he
introduced through his nonlinear table look-up procedure. The problem here was
not that the linkage hypothesis was incorrect; rather, Frantz’s functions were sim-
ply not tough enough to provide the desired confirmation of theory. That he had
difficulty designing difficult functions is not surprising in the light of what is now
known about GA-deception. As was pointed out in Chapter 2, it is not sufficient
to have long nonlinearities within a function-coding combination. Also needed
are lower order building blocks that mislead. This theory and the mathematical
tools required to design such problems were not available at the time of Frantz's
investigation.

Frantz continued his study by investigating the addition of inversion, a reor-
dering operator, to his genetic algorithm in an effort to search for better string
permutations with the hope of creating better, more tightly linked building
blocks. It should come as no surprise that Frantz's experiments with inversion
were inconclusive (inversion is treated in the next chapter). To show a differen-
tial advantage for inversion requires a problem with a deceptive nonlinearity and

102

Chapter 4 / Some Applications of Genetic Algorithms

his earlier experiments without inversion had already shown that this was not
the case.

Frantz also used statistical analyses to show that certain allele combinations
were being processed at levels significantly different from that expected at ran-
dom. He also introduced two operators, a partial complement operator and a
multiple-point crossover operator. The partial complement operator (which he
called a migration operator) complemented roughly a third of the bits of se-
lected individuals in the population. These individuals were called immigrants
and were permitted to enter the subsequent generation. The partial complement
operator was intended to maintain diversity in the population. Frantz found that
this operator did add diversity, but this diversity was purchased at too high a cost:
decreased performance. The multiple crossover operator he proposed permitted
crossover sites to be selected by scanning right to left, successively switching
sides with some specified probability. Although he proposed this operator, it was
left to a later study by De Jong (1975) to show its strengths and weaknesses.

Bosworth, Foo, and Zeigler—Real Genes

The wave of genetic algorithm activity cresting around 1972 seemed to bifurcate
along coding strategy lines. The minimalist camp seemed ready to buy into Hol-
land’s theory of schemata and the low-cardinality alphabets it recommended. The
maximal alphabet camp seemed to prefer the comforting correspondence of one
gene, one parameter regardless of the number of alternative alleles required for
a particular gene. An extreme form of this latter philosophy was expounded in
the work of Bosworth, Foo, and Zeigler (1972) (Also see Foo and Bosworth,
1972; Zeigler, Bosworth, and Bethke, 1973). In this study operators called repro-
duction, crossover, mutation, and inversion were applied to “strings” composed
of between four and 40 real-type parameters. As with previous work in high-
cardinality alphabets, a natural mutation operator was hard to come by, and as a
result, five different mutation operators were used:

1. Fletcher-Reeves (FR) mutation

2. Uniform random mutation

3. Quadratic gaussian approximation mutation
4. Cubic gaussian approximation mutation

5. Zero mutation

Readers familiar with traditional optimization procedures will recognize the first
“mutation” operator as a fairly sophisticated hill-climbing algorithm. In this so-
called mutation operator, approximate gradient information (obtained from 2r
other function evaluations where r is the number of real parameters) was used
to determine the line of conjugate ascent, which was then explored using golden
search (using still other function evaluations).

This is a far cry from the notion of simple mutation expounded in the first
three chapters. More important, it is very distant from any reasonable biological
precedent. If such an operator existed in nature, where would all those other
function evaluations come from? Moreover, if such a search were used in a natural

Genetic Algorithm Applications of Historical Interest 103

setting, could we ever be assured that derivative information would be meaning-
ful in the fracted, discontinuous environments we would search? This is not to
question the usefulness of these techniques. The use of reproduction, the parallel
search from a population, and the use of sophisticated local search procedures
may form powerful search techniques for some limited set of functions; however,
in general the use of high-cardinality alphabets so severely reduces implicit par-
allelism that it is inappropriate to call these schemes genetic algorithms in the
sense of Holland,

Box and Evolutionary Operation

This was not the first time that techniques have been called “genetic” or “evo-
lutionary” when the actual resemblance to natural genetics was minimal. A very
early effort along these lines was Box's (1957) scheme of evolutionary opera-
tion. This was less an algorithm and more a management technique to permit
less technically minded industrial workers to execute a regular plan of experi-
mentation about the current operating point. The aim was to use the experiments
to improve some desirable process metric. To illustrate his scheme, Box gave an
example of a process dependent on three variables: carbon treatment, air blow-
ing, and rate of temperature rise. A hypercube was created around the current
operating point (Fig. 4.7), and a systematic schedule of visiting the vertexes of
the hypercube was undertaken. If significant improvement was found by visiting
any of the neighboring points, a decision was made by the evolutionary opera-
tions committee to change the operating point, a new hypercube was created,

fa) CYCLE OF VARIANTS {b) AESUL TS FOR MEAN TEXTURE AFTER 6 CYCLES
R
142 I 20
a—-—'_'-'_-.__'—-
YES @ﬁ@ ""‘h.._,_q_ﬂ-?
B -
CARBON 8
TREATMENT | A
— \
NO [ﬂ"—_- \ 50
a\S"'—
\ -D‘F eM®

FIGURE 4.7 Use of a hypercube of points in Box’s evolutionary operation
scheme (Box, 1957). Reprinted by permission from Journal of the Royal Statis-
tical Society, C.

104

Chapter 4 / Some Applications of Genetic Algorithms

and experimentation proceeded. Although the scheme sounds reasonable
enough, and subsequent, more automated simplex schemes have proved useful
in local search (Nelder and Mead, 1965; Spendley, Hext, and Himsworth, 1962),
how is this scheme in any way evolutionary? Box (p. 83) put it this way:

Living things advance by means of two mechanisms:

(i) Genetic variability due to various agencies such as mutation.
(ii) Natural selection.

Chemical processes advance in a similar manner. Discovery of a new
route for manufacture corresponds to a mutation. Adjustment of the pro-
cess variables to their best levels, once the route is agreed, involves a
process of natural selection in which unpromising combinations of the
levels of process variables are neglected in favour of promising ones.

Although we can have little quarrel with his call for operators analogous to nat-
ural selection, under this definition, just about anything that changes a structure
qualiﬁr:s as a mutation. This is much too loose a definition, and we must be more
careful that essential parts of the analogy are preserved. To some extent Box's
use of a search hypercube is biological in that the search proceeds from a popu-
lation of points (although nature does not restrict its search to some local neigh-
borhood of the current creature, and biological populations are rarely so orderly
or regular); however, the lack of a finite coding destroys the schema processing
that underlies genetic search; the lack of a recombination operator prevents the
innovative information exchange between pairs of structures we found so useful
in earlier chapters. We must conclude, then, that the method of evolutionary
operation, although a useful tool and an ancestor of other local search techniques,
is not a genetic algorithm in the modern sense.

Other Evolutionary Optimization Techniques

A number of evolution-inspired optimization techniques appeared following
Box's work (Bledsoe, 1961; Bremermann, 1962; Friedman, 1959). The studies of
Bledsoe and Bremermann came closest to the modern notion of a genetic algo-
rithm. Both suggested binary string codings. Bledsoe presented results of a
scheme that combined individual-by-individual generation, mutation, and save-
the-better selection. He also proposed but did not present results for a popula-
tion-by-population scheme. Bremermann extended Bledsoe's work by generating
successive populations of strings using selection and mutation. He also proposed
the use of a recombination operator but did not present experimental results.
None of these early studies were supported by results analogous to the schema
theorem.

Techniques under the name Evolufionstrafegie were independently devel-
oped at the Technical University of Berlin (Rechenberg, 1965; Schwefel, 1981).
Rechenberg’s first experiments evolved an airfoil shape using a physical apparatus
that permitted local perturbation of airfoil geometry. Computer simulations of
similar processes were performed following these early experiments. The use of

Genetic Algorithm Applications of Historical Interest 105

real parameters limits the schema processing inherent in these methods. None-
theless, the Fvolutionstrategie has gained a devoted following in certain engi-
neering and scientific circles, particularly in Germany (Rechenberg, 1986).

Fogel, Owens, and Walsh—Evolutionary Programming

Evolutionary operation and the techniques of evolutionary optimization were fol-
lowed by the evolutionary programming techniques of Fogel, Owens, and Walsh
(1966). The rejection of this work by the artificial intelligence community, more
than any other single factor, was responsible for the widespread skepticism faced
by more schema-friendly genetic algorithms of the late 1960s and mid-1970s,

In this work a variety of sequential symbol prediction tasks were performed
by searching through a space of small finite-state machines. To better understand
the task search space, consider a state diagram of a three-state machine as shown
in Fig. 4.8. The Greek letters are output symbols, the 0 and 1 are input symbols,
and the capital letters are states. For example, if the machine of Fig. 4.8 is in state
A and the machine receives an input symbol of 1, a B is output and the machine
remains in state A On the other hand, if the machine is in state A and receives a
0 as input, a is written and the machine moves to state B. A complete state
transition description for this machine is contained in Table 4.2.

This type of machine was trained to predict repeating cycles of output sym-
bols using the techniques of Fogel, Owens, and Walsh’s evolutionary program-
ming, which primarily consisted of two operators:

1. Selection
2. Mutation

FIGURE 4.8 Schematic of finite-state machine transition diagram as learned in

evolutionary programming (Fogel, Owens, and Walsh, 1966). Adapted by permis-

sion of John Wiley & Sons, Inc. from Artificial Intelligence Through Simulated

ivolumm by L.]. Fogel, A. J. Owens, and M.]J. Walsh, copyright © 1966 John Wiley
Sons, Inc.

106 Chapter 4 / Some Applications of Genetic Algorithms

TABLE 4.2 State Transition Table for Finite-State Machine (Fogel,
Owens, and Walsh, 1967)

Present State Input Symbol Next State OutputSymbol
C 0 B p
1 C o
C 1 A y
A 1 A B
A 0 B B
B 1 C o

Adapted by permission of John Wilcy & Sons, Inc. from Artificial Intelligence
Through Simulated Evolution by L.). Fogel, A.). Owens, & M. J. Walsh. Copy-
right © 1966 John Wiley & Sons, Inc.

In its simplest form, their selection operator chose the better of two machines,
the parent or the mutated offspring machine. Populations larger than size n = 2
were considered in their work; however, regardless of the number of parent ma-
chines saved, mutation operators were the only structure-modifying mechanism
used in this work.

For Fogel, Owens, and Walsh, mutation was the single modification of the
finite-state machine state diagram in the following sense (pp. 14-15):

An offspring of this machine is then produced through mutation; that is,
through a single modification of the parent machine in accordance with
some mutation noise distribution. The mode of mutation is determined
by the interval within which a number selected from a random number
table lies. The intervals are chosen in accordance with a probability dis-
tribution over the permitted modes of mutation. Additional numbers are
then selected in order to determine the specific details of the mutation.
Thus, the offspring is made to differ from its parent either by an output
symbol, a state transition, the number of states, or the initial state.

The evolutionary programming of Fogel, Owens, and Walsh with its random al-
teration of a finite-state machine state diagram and save-the-best selection was
insufficiently powerful to search other than small problem spaces quickly. We
turn away from these and similar studies that ignore the fundamental importance
of structured recombination, and now consider a pivotal study of genetic algo-
rithms that combined solid theoretical analysis with carefully controlled com-
putational experiments.

DE JONG AND FUNCTION OPTIMIZATION

The year 1975 was a particularly good one for genetic algorithms. Holland pub-
lished his influential book, Adaptation in Natural and Artificial Systems, and in
that same year De Jong completed his important and pivotal dissertation, “An

De Jong and Function Optimization 107

Analysis of the Behavior of a Class of Genetic Adaptive Systems.” De Jong's study
still stands as a milestone in the development of genetic algorithms because of
its combination of Holland’s theory of schemata and his own careful computa-
tional experiments. Because of its importance to the subsequent development of
genetic algorithms and because of its carefully considered conclusions, we ex-
amine De Jong's study in somewhat greater detail than its predecessors.

Like Hollstien's (1971) earlier study, De Jong's work considered genetic al-
gorithms in a function optimization setting although he was well aware of the
potential for GAs in other domains: he was especially interested in their applica-
tion in data structure design, algorithm design, and computer operating system
adaptive control. Despite the attraction of these more esoteric concerns, De Jong
recognized the importance of carefully controlled experimentation in an unclut-
tered problem domain. He thus stripped the genetic algorithm, the environment,
and the performance criteria to bare essentials. It was these simplifications that
permitted him to perform the baseline experiments that have served as the basis
for all further GA studies and applications.

De Jong constructed a test environment of five problems in function min-
imization. He took care to include functions with the following characteristics:

Continuous/discontinuous
Convex/nonconvex
Unimodal/multimodal
Quadratic/nonquadratic
Low-dimensionality/high-dimensionality
Deterministic/stochastic

The functions and their coding characteristics are presented in Table 4.3. Two-
dimensional, inverted sketches of the five functions are presented in Figs. 4.9—
4.11.

To quantify the effectiveness of different genetic algorithms, De Jong devised
two measures, one to gauge convergence and the other to gauge ongoing perfor-
mance. He called these measures off-line (convergence) and on-line (ongoing)
performance respectively. The names off-line and on-line refer to the difference
in emphasis between off-line and on-line applications. In an off-line application,
many function evaluations can be simulated and the best alternative so far saved
and used after the achievement of some stopping criteria. An on-line application
does not afford this luxury and function evaluations are achieved through real
experimentation on line; as a result, a premium is placed on getting to acceptable
performance quickly. As pointed out earlier, the usual emphasis on convergence
is a major flaw in current thinking about search procedures.

In his study De Jong defined the on-line performance x(s) of strategy s on
environment e as follows:

xAs) = ;2;&(:),

where f(t) is the objective function value for environment e on trial £ In words,
the on-line performance is an average of all function evaluations up to and in-

108 Chapter 4 / Some Applications of Genetic Algorithms

TABLE 4.3 De Jong Five-Function Test Bed

Function
Number Function Limits
E]
1 Sfilx,) = Eﬁ:&ﬂ -512=sx =512
2 Slx) = 100(x,* = x, P + (1 — x,)%, -2048 = x, = 2.048
3 flx) = 2, integer(x,), ~512=x =512
]
an
4 fix) = ¥ ix}! + Gauss(0,1), ~-1.28 <ax, =< 1.28
1
- 1
5 fx) = 0002 + 3, =g, —65.536 < x, < 65.536

".IJ‘ + E{Ia = '“u)&

FIGURE 4.9 Inverted, iwo-dimensional versions of De Jong's (1975) test func-
tions F1 and F2. Reprinted by permission.

De Jong and Function Optimization 109

FIGURE 4.10 Inverted, two-dimensional versions of De Jong's (1975) test func-
tions F3 and F4. Reprinted by permission.

110

Chapter 4 / Some Applications of Genetic Algorithms

FIGURE 4.11 Inverted version of De Jong's (1975) test function F5. Reprinted
by permission.

cluding the current trial. De Jong actually presented a more general version of
this criterion, which permitted nonuniform weighting of trials; however, he
adopted a uniform weighting throughout his study.

He also defined the performance measure x*(s), the off-line performance of
strategy s on environment e as follows:

x%s) = 3. 21U,

where f*(1) = best {{(1),f(2),..., f{t)}. In words, the offline performance is
a running average of the best performance values to a particular time. Again, a
nonuniformly weighted version of this criterion was also proposed, but uniform
trial weighting was used throughout.

With a test bed of five trial functions, and two criteria of goodness defined,
De Jong set out to investigate variations of what we have come to call the simple
genetic algorithm. He started from a version he called R1 (reproductive plan 1),
which consisted of the three operators considered in Chapter 3:

1. Roulette wheel selection
2. Simple crossover (with random mating)
3. Simple mutation

All operators were applied to successive populations of binary strings coded as
mapped, concatenated unsigned binary integers.

De Jong and Function Optimization 111

De Jong was aware that the plan R1 was not just a single plan but rather a
family of plans depending upon four parameters:

n = population size
p. = crossover probability
= mutation probability
generation gap

I

pm
G

We are familiar with the first three of these from our work in the previous
chapter. Generation gap G was introduced by De Jong to permit overlapping
populations. It was defined between O and 1 as follows:

G =1 nonoverlapping populations
0<G <1 overlapping populations

In the overlapping populations n-G individuals are selected for further genetic
action. Resulting offspring are placed in the existing population by choosing n'G
population slots uniformly at random (without replacement),

In his early studies De Jong considered the variation of each of the GA param-
eters first individually and then in limited combinations on the first trial function
F1, a smooth, quadratic function of three variables. He later performed limited
parametric studies on the entire five-function testbed.

Figures 4.12—4.14 show the results for population size experiments on func-
tion F1. As might be expected, larger populations lead to better ultimate off-line
performance (convergence) because of the larger pool of diverse schemata avail-
able in a larger population. The inertia of a larger population also leads us to
expect the poorer initial on-line performance shown in Fig. 4.14. On the other
hand, smaller populations have the ability to change more rapidly and thus ex-
hibit better initial on-line performance.

To combat premature allele loss, mutation rate increases are often suggested
as a way to maintain sufficient diversity for continued improvement. De Jong's
studies have clearly demonstrated that this is no panacea, as is evident in Figures
4.15—4.17. In these runs (with n = 50, p, = 1.0, G = 1.0) even though the
increased mutation rate decreases the number of lost alleles, this decrease is
bought at the expense of degraded off-line and on-line performance. As the mu-
tation rate is increased to a value p,, = 0.1, the off-line performance of plan 81
more and more starts to resemble that of a simple random search. (Of course, a
mutation rate p,, = 0.5 is a random search regardless of the p_and »n values.)
Furthermore, the increases in mutation probability consistently degrade on-line
performance.

De Jong also experimented with crossover probabilities and generation gap
values. As a result of these studies he suggested a crossover probability p. = 0.6
as a reasonable compromise between good on-line and off-line performance; later
studies (Mercer, 1977; Grefenstette, 1986) have suggested that higher crossover
rates (p, = 1.0) are better when the stochastic errors of sampling are reduced
through the use of more accurate selection procedures. The studies of generation

112 o
i
Nes0
-
&8
o
@
B 1
{et
o
E‘ L
o
&
-
A0 2oon. o P00 1000%.0

) W00 SO0
SAMPLES REQUIRED

FIGURE 4.12 The effects of population size on allele loss for plan R1 on func-
tion F1 (De Jong, 1975). Reprinted by permission.

.15

8l
%o 2000.0

w000 6000.0 8000.0 10000.0
SAMPLES REQUIRED

FIGURE 4.13 The effects of population size on off-line performance of plan R1
on function F1 (De Jong, 1975). Reprinted by permission.

13

3.0

Fim
16.0 21.0 26.0

11.0

6.0

s e ——
.0 S000.0 10000.0 IS000.0 20000.0 25000.0

SAMPLES REQUIRED

FIGURE 4.14 The effects of population size on on-line performance of plan R1
on function F1 (De Jong, 1975). Reprinted by permission.

15.00 20.00

ALLELES LOST
10.00

5.00

0.00

B e Pm=.1

8

]
w 4 " 4 " 4 el 4 4

0.0 200.0 %00.0 800.0 200.0
SAMPLES REQUIRED (X10-1)

1000.0

FIGURE 4.15 The effects of mutation rate on allele loss for plan R1 on function
F1 (De Jong, 1975). Reprinted by permission.

114

TS

0.00

L

‘0.0

e - + - S—

400.0 0.0 . 12000 _ 1600.0 2000.0
SAMPLES REQUIRED (X10°')

FIGURE 4.16 The effects of mutation rate on off-line performance of R1 on
function F1 (De Jong, 1975). Reprinted by permission.

g
i
Random Search
g
. R
P -.1
g m

g Py =005
~
P =001
8
g . . —
‘0.0 S00.0 1000.0 1500.0 2000.0 2500.0
SAMPLES REQUIRED X101}

FIGURE 4.17 The effects of mutation rate on on-line performance of plan R1
on function F1 (De Jong, 1975). Reprinted by permission.

De Jong and Function Optimization 115

gap suggested that the nonoverlapping population model was best in most optim-
ization studies, where off-line performance tends to be the overriding concern;
however, De Jong's studies did show that on-line performance is not severely
degraded by using smaller generation gap values. This fact is useful in machine
learning where learning while performing well is important.

To improve performance of his baseline GA, De Jong investigated five varia-
tions of plan R1 as follows:

R2 Elitist model

R3 Expected value model

R4 Elitist expected value model
R5 Crowding factor model

R6 Generalized crossover model

In his elitist model R2, De Jong took special care to preserve his best struc-
tures (De Jong, 1975, p. 102):

Let a*(1) be the best individual generated up to time £ If, after generating
A(t + 1) in the usual fashion a*(¢) is not in A(t + 1), then include a*(t)
to A(¢ + 1) as the (N + 1)th member.

In his experiments with R2, De Jong found that on unimodal surfaces, the elitist
plan significantly improved both on-line and off-line performance; however, on
multimodal function F5, the elitist plan degraded both performance measures. As
De Jong has pointed out, this suggests that elitism improves local search at the
expense of global perspective.

To reduce the stochastic errors of roulette wheel selection, De Jong designed
the expected value model R3. Recall that we wish to issue an exponentially in-
creasing (or decreasing) number of copies to schemata if schema average fitness
is above (or below) population average fitness. Under the base plan R1, we do
this by calculating a probability of selection proportional to fitness and by draw-
ing n individuals according to that probability distribution. As De Jong points out,
this procedure leaves us open to two sources of error. First, since we cannot
practically calculate actual schema average fitnesses, we are forced to estimate
them through sequential finite sampling. Second, the selection scheme (roulette
wheel selection) is itself a high-variance process with a fair amount of scatter
between expected and actual numbers of copies. In 3 De Jong attempted to
reduce the latter error. To do this, he calculated the expected number of offspring
for each string f/f (assuming that the entire population n is reproduced each
generation). Thereafter each time a string was selected for mating and crossover,
its offspring count was decreased by 0.5 (in De Jong's study only one of the
offspring was saved from crossover and mating, unlike the mechanism discussed
in Chapter 3, where both offspring were saved). When an individual string was
selected for reproduction without mating and crossover, its offspring count was
decreased by 1.0. In either case an individual whose offspring count fell below
zero was no longer available for selection. In this way the actual number of off-
spring was forced to be less than f/f + 1 and was generally less than fif + 0.5.

116

Chapter 4 / Some Applications of Genetic Algorithms

Figure 4.18 compares the expected value plan 83 to plans RZ and R1 on
function F£1 on the basis of allele loss. Plan R3 loses far fewer alleles than the base
or elitist plans. Figures 4.19 and 4.20 display De Jong's results comparing R3 to
R2 and R1 on the basis of off-line and on-line performance respectively. B3 is
clearly superior to the base plan R1 in on-line and off-line performance. Further-
more, although the elitist plan R2 is somewhat better than R3 on the low dimen-
sional, unimodal function F1, plan R3 outperformed R2 and R1 in both on-line
and off-line performance measures over the environment £ (functions F1-F5). In
limited additional experimentation with crossover probability p, on plan R3, De
Jong found that with the reduced stochastic error plan £3 could tolerate increas-
ing sampling rates. Subsequent studies with other stochastic error-reducing sam-
pling procedures (Booker, 1982; Brindle, 1981; Grefenstette, 1986) have
confirmed this observation.

In plan R4, De Jong combined plans R2 and R3 to form an elitist expected-
value model The results he obtained were as one might expect: on unimodal
functions (F1-F4) considerable improvement was observed, while on the diffi-
cult foxhole function F5, performance was degraded over the expected-value
plan alone. Nonetheless, because of the improvement on the first four functions,
the global robustness measures were superior.

De Jong was troubled by the degraded performance on the multimodal func-
tion F5; he took some naturally motivated steps to correct the difficulty in his
reproductive plan R5. Following Holland (1975), De Jong reasoned that in nature,
as like individuals begin to dominate a niche, increased competition for limited
resources decreases life expectancy and birthrates. Less crowded niches experi-
ence less pressure and achieve life expectancy and birthrates much closer to their
potential. To enforce such a crowding pressure in artificial genetic algorithms,
De Jong forced newly generated offspring to replace similar, older adults in the
hope of maintaining more diversity in the population.

To do this, De Jong adopted an overlapping population model and used gen-
eration gap values set at G = 0.1. He also defined a new parameter he called the
crowding factor (CF). In this new plan RS, the crowding model, when an indi-
vidual was born, one individual was selected to die. The dying individual was
selected from a subset of CF members chosen from the full population at random.
The dying individual was chosen as that individual that most closely resembled
the new offspring using a simple bit-by-bit similarity count to measure resem-
blance. This procedure is not unlike Cavicchio’s (1970) preselection scheme
mentioned earlier.

Figure 4.21 shows that a crowding factor of CF = 2 gave nearly global opti-
mal performance on function F5 over the interval of observation. The notion of
crowding and niche has been exploited by others (Goldberg and Richardson,
1987; Perry, 1984) in subsequent studies. These ideas are important in multi-
modal function optimization and machine learning, we shall pay careful attention
to them in subsequent chapters.

The last model De Jong considered was his generalized crossover model RG.
In this plan a parameter called the number of crossover points (CP) was defined.

117

30.00

Z5.00

R1(50,.001,.6,1,0)

R2(50,.001,.6,1.0)

15.00

B)(50,.001,.6,1.0)

ALLELES LOST

5.00

+

8000.0 500.0

8
.0 1500.0 3000.0 _ N500.0
SAMPLES REQUIRED

FIGURE 4.18 Comparison of allele loss of plans R1, R2, and R3 on function F1
(De Jong, 1975). Reprinted by permission.

D

-10

0.00

L)

‘0.0 1500, .0 6000.0 7500.0

0 3000, 4500.0
SAMPLES REQUIRED

FIGURE 4.19 Comparison of off-line performance of plans R1, R2, and R3 on
function F1 (De Jong, 1975). Reprinted by permission.

118

12.00

4. 00

2.00

8
%.0 1500 8000.0 7500.0

0 3000.0 45000
SAMPLES REQUIRED

FIGURE 4.20 Comparison of on-line performance of plans R1, R2, and R3 on
function F1 (De Jong, 1975). Reprinted by permission.

2
‘ r
8
i~
8
w
Eg
- =
-4
8
= B5(1)
B5(2)
ISIJa
B5(&)
2 K\
MIN(F5)

]
.0 1500. §000.0 7500.0

1] 3000. 0 §500.0

SAMPLES REQUIRED
FIGURE 4.21 Effect of crowding factor on off-line performance, plan RS on
function F5 (De Jong, 1975). Reprinted by permission.

De Jong and Function Optimization 19

With CP set to 1, generalized crossover reduced to simple crossover, With even
CP values, the string was treated as a ring with no beginning or end, and CP
crossover points were selected around the circle uniformly at random. For ex-
ample, with CP = 4 information was exchanged between the two strings (now
visualized as rings), as shown in Fig. 4.22. With odd CP values a default crossing
point was always assumed at position 0 (the string beginning), as illustrated in
Fig. 4.23 with CP = 3.

This was not the first time more complex crossover operators had been de-
fined. Earlier, Cavicchio (1970) defined a two-point crossover operator, and
Frantz (1972) defined a generalized, single-parameter crossover operator in his
study of positional nonlinearity. In De Jong’s study, multiple-point crossover de-
graded off-line and on-line performance increasingly with increased number of
cross points. De Jong explained this poor performance by calculating the survival
of second-order schemata. A more intuitive explanation can be found by counting
the number of unique operators involved. In the case of simple crossover, we
have not just a single operator but a set of / — 1 (where [is the string length)
operators. In the simple crossover models, we select among these ! — 1 operators
uniformly at random. With a two-point crossover operator (CP = 2) there are
(4) different ways of picking the rtwo cross points. In general we have (L) oper-
ators for multiple-point crossover with parameter CP. As a result, when CP is
increased, each operator is less likely to be picked during a particular cross, and
less structure can be preserved. With more mixing and less structure, these more

pick 4 crossing
points at random

<0

a 4 point crossover
ylelds 2 new rings

QO

FIGURE 4.22 Multiple-point crossover operator with even-numbered cross
point (CP = 4).

120

Chapter 4 / Some Applications of Genetic Algorithms

pick 3 crossing
points at random

o 3 point crossover

ylelds 2 new strings

7R
NAUHESLALYALL UL B N\

FIGURE 4.23 Multiple-point crossover example with odd-numbered cross
point (CP = 3).

involved crossover operators become more like a random shuffle and fewer im-
portant schemata can be preserved. This degradation was observed by De Jong
in his study.

De Jong also compared several local search algorithms to the performance
of plan R4 (elitist expected-value model). He compared Brent'’s (1973) algorithm
PRAXIS and the improved Fletcher and Powell algorithm (Fletcher and Powell,
1963) DFP to the performance of R4. Overall R4 outperformed both DFP and
PRAXIS, with the most profound differences noted on the multimodal function
F5. As we might expect, DFP and PRAXIS performed well on smooth, unimodal
functions but did not perform well on the others. Of course, for smooth, uni-
modal functions there is no sense in using a genetic algorithm in the first place;
however, if breadth of performance across a spectrum of functions is desirable,
genetic algorithms provide one promising way to proceed.

IMPROVEMENTS IN BASIC TECHNIQUE

De Jong’s work placed genetic algorithms and their application on a firmer foun-
dation. Following his study, a number of people suggested and tested various
improvements to the basic genetic algorithm. This section examines improve-
ments in the areas of selection, scaling, and ranking methods. Additional, more
advanced operators such as inversion, dominance, mating restriction, and niche
are considered in Chapter 5.

Improvements in Basic Technique 121

Alternate Selection Schemes

After De Jong's success with expected value selection, several researchers inves-
tigated a number of selection alternatives, trying to reduce the stochastic errors
associated with roulette wheel selection. Brindle’s dissertation (1981) examined
six schemes:

Deterministic sampling

. Remainder stochastic sampling without replacement
. Stochastic sampling without replacement

. Remainder stochastic sampling with replacement

. Stochastic sampling with replacement

. Stochastic tournament (Wetzel ranking)

=R O R

Stochastic sampling with replacement is a fancy name for our old friend, rou-
lette wheel selection; stochastic sampling without replacement is another name
for De Jong's expected-value model B3, described earlier. Deterministic sampling
is a scheme where the probabilities of selection are calculated as usual, pselect,
= f/2f Then the expected number of individuals for each string e, is calculated
e, = pselect;n. Each string is allocated samples according to the integer part of
the e, values, and the population is sorted according to the fractional parts of the
¢, values. The remainder of the strings needed to fill the population are drawn
from the top of the sorted list.

Both remainder stochastic sampling methods (with and without replace-
ment) start in a manner identical to deterministic sampling. Expected individual
count values are calculated as before and integer parts are assigned. At this point
the stochastic remainder schemes part company with their deterministic cousin.
In stochastic remainder sampling with replacement, the fractional parts of the
expected number values are used to calculate weights in a roulette wheel selec-
tion procedure that is then used to fill the remaining population slots. In stochas-
tic remainder sampling without replacement, the fractional parts of the expected
number values are treated as probabilities. One by one, weighted coin tosses
(Bernoulli trials) are performed using the fractional parts as success probabilities.
For example, a string with an expected number of copies equal to 1.5 would
receive a single copy surely and another with probability 0.5. This process con-
tinues until the population is full.

The stochastic tournament procedure was suggested to Brindle by Wetzel
(1983). In this method (which Brindle calls a ranking method), selection prob-
abilities are calculated normally and successive pairs of individuals are drawn
using roulette wheel selection. After drawing a pair, the string with higher fitness
is declared the winner, inserted in the new population, and another pair is drawn.
This process continues until the population is full,

Brindle tested each of these six procedures on a seven-function test bed of
her own design. Subsequent investigation (K. A. De Jong and L. B. Booker, per-
sonal communication, 1985) has questioned Brindle's departure from standard
test functions. A number of the functions in the Brindle test bed have numbers
of peaks of the same order of magnitude to the number of points in her coding

122

Chapter 4 / Some Applications of Genetic Algorithms

(2*"). This resulted in what is referred to as an aliasing problem: insufficient
sampling of equidistant points resulting in false periodicities and the inability to
discriminate berween different peaks through the exploitation of important sim-
ilarities. Despite these difficulties, Brindle's study did confirm the fundamental
inferiority of straight roulette wheel selection observed earlier by De Jong
(1975). The performance differences among the other five mechanisms were
small, and Brindle was unable to recommend one over the other although she
did use the deterministic scheme in the remainder of her dissertation work.

Subsequent study of genetic search as part of Booker's (1982) investigation
of machine learning demonstrated the superiority of stochastic remainder selec-
tion without replacement over De Jong's expected-value model (stochastic sam-
pling without replacement). As a result of this work, the stochastic remainder
selection procedure without replacement has become widely used in subsequent
applications.

Because of its popularity, we examine one implementation in Fig. 4.24. In
this program a dummy population pop is subjected to stochastic remainder se-
lection through the introduction of two code modules: the procedure preselect
and the function select In preselect the integer and fractional counts are handled
by assigning the index number of selected strings to the choices array. The select
function then uses this choices array to choose one of the selected individuals at
random. The integration of this piece of code into the SGA code of Chapter 3 and
Appendix B is left as an exercise at the end of this chapter.

Scaling Mechanisms

Since De Jong's baseline study, scaling of objective function values has become a
widely accepted practice. This is done to keep appropriate levels of competition
throughout a simulation. Without scaling, early on there is a tendency for a few
superindividuals to dominate the selection process. In this case objective func-
tion values must be scaled back to prevent takeover of the population by these
superstrings. Later on, when the population is largely converged, competition
among population members is less strong and the simulation tends to wander. In
this case objective function values must be scaled up to accentuate differences
between population members to continue to reward the best performers. Ac-
tually scaling mechanisms are nothing new, dating back to the earliest empirical
studies of GAs by Bagley (1967) and Rosenberg (1967). A review of current
scaling procedures is presented in Forrest (1985a). These methods include the
following:

1. Linear scaling
2. Sigma (o) truncation
3. Power law scaling

Linear scaling has already been discussed in Chapter 3. As the name implies,
we simply calculate the scaled fitness ' from the raw fitness (objective function

Improvements in Basic Technique

type choicearray = array|l..maxpop] of integer;

var cholces:choicearray; { Array of cholces |
nremain: integer;

procedure preselect(popsize:integer; avg:real;
var pop:population; var cholces:chelcearray);
{ Selection by stochastic remainder method)
var j, jassign, k:integer;
expected:real;
winner :boolean;
fraction:array([l..maxpop] of real;
begin
ji=0; k := 0;
repeat | Assign whole numbers)
Ji=5+1;
expected := pop[j).fitness / avg;
jassign := trunc(expected);
fraction[j] := expected - jassign;
while (jassign > 0) do begin
k := k + 1; jassign := jassign - 1;
cholces[k] := j
end;
until j = popsize;
j oi=0;
vhile k < popsize do begin | Assign fractional parts }
i= j + 1; if j > popsize then J := 1;
if fraction[j] > 0.0 then begin
winner := flip(fraction[j]); | A winner If true)
if winner then begin
k:=k+1;
choices[k] := j;
fraction(j] := fraction(j] - 1.0;
end;
end;
end;
end;
function select(var popsize nremain:integer;
var choices:choicearray; var pop:population):integer;
{ select using remainder method)
var jplck:integer;
begin
jpick := rnd(l,nremain),
select := choices[jpick];

writeln(jpick=',jpick,’ choices=', choices[jpick],’ nremain=', nremain);

choices[jplck] := choices[nremain];
nremain := nremaim - 1;
end;

123

FIGURE 4.24 Stochastic remainder selection procedure in Pascal. The proce-

dures preselect and select.

124

Chapter 4 / Some Applications of Genetic Algorithms

value) using a linear equation of the form:

[=af + b
In this equation the coefficients @ and b are usually chosen to do two things:
enforce equality of the raw and scaled average fitness values and cause maximum
scaled fitness to be a specified multiple (usually two) of the average fitness. These
two conditions ensure that average population members receive one offspring
copy on average and the best receive the specified multiple number of copies.
Caution must be exhibited in linear scaling to prevent negative scaled fitness
values.

Linear scaling works well except when negative fitness calculation prevents
its use. This is most usually a problem later in a run when most population mem-
bers are highly fit, but a few lethals have a very low value. To circumvent this
scaling problem, Forrest (1985a) suggested using population variance informa-
tion to preprocess raw fitness values prior to scaling. In this procedure, which
we call sigma (o) truncation because of the use of population standard deviation
information, a constant is subtracted from raw fitness values as follows:

== el
In this equation the constant ¢ is chosen as a reasonable multiple of the popula-
tion standard deviation (between 1 and 3) and negative results (f° < 0) are ar-
bitrarily set to 0. Following sigma truncation, fitness scaling can proceed as
described without the danger of negative results.

Gillies (1985) suggested a power law form of scaling where the scaled fitness
is taken as some specified power of the raw fitness f:

=4
In limited studies in a machine vision application, Gillies took & = 1.005; how-
ever, in general the k value is problem-dependent and may require change during
a run to stretch or shrink the range as needed.

Ranking Procedures

The somewhat ad hoc nature of all these scaling procedures led Baker (1985) to
consider a nonparametric procedure for selection. In this method the population
is sorted according to objective function value. Individuals are then assigned an
offspring count that is solely a function of their rank. Figure 4.25 shows one of
the ways Baker allocated trials according to rank. He performed experiments
comparing his ranking procedure to other selection schemes. His results were
generally inconclusive, although ranking showed the same resistance to overse-
lection and underselection demonstrated by normal selection schemes used in
conjunction with scaling procedures. The method has been criticized because it
essentially disassociates the fitness function from the underlying objective func-
tion; however, the direct link assumed between fitness and objective function is
not grounded in theory and the ranking procedure does provide a consistent

Current Applications of Genetic Algorithms 125

max r--

Count

min t—

- —

Rank

FIGURE 4.25 Count assignment mechanism in sorted selection scheme
(Baker, 1985).

means of controlling offspring allocation. What is needed here are better theories
of trial allocation so appropriate numbers of copies may be assigned to current
population members without detailed knowledge of the underlying function or
coding.

CURRENT APPLICATIONS OF GENETIC ALGORITHMS

Table 4.4 lists some of the early applications of genetic algorithms, the miscues
and the benchmarks, along with some current applications. The remainder of the
chapter samples a potpourri of current GA applications in science, engineering,
business, and the social sciences. For the moment, we focus on applications that
more or less use a version of the simple (three-operator) genetic algorithm. The
next chapter opens our sights to experiments and experience with more com-
plex operators and their application.

Optimization of Pipeline Systems

My own work has largely centered on engineering applications of genetic algo-
rithms. After taking John Holland’s courses in genetic algorithms at the University
of Michigan, I embarked on Ph.D. studies where I applied GAs to optimization
and machine learning problems in natural gas pipeline control (Goldberg, 1983).

In my first problem, I considered Wong and Larson’s (1968) 10-compressor,
10-pipe, steady-state, serial pipeline problem. A schematic of that system is shown
in Fig. 4.26. The problem is governed by nonlinear state transition equations that
dictate the pressure drop through the pipelines and pressure rise across com-

126

Chapter 4 / Some Applications of Genetic Algorithms

TABLE 4.4 Genetic Algorithm Applications in Search and Optimization

Year Investigators Description
BIOLOGY
1967 Rosenberg Simulation of the evolution of single-celled
organism populations
1970 Weinberg Qutline of cell population simulation
including metalevel GA
1984 Perry Investigation of niche theory and
speciation with GAs
1985 Grosso Simulation of diploid GA with explicit
subpopulations and migration
1987 Sannier and Goodman GA adapts structures responding to spatial
and temporal food availability
COMPUTER SCIENCE
1967 Bagley Parameter search in hexapawn-like game
evaluation function via GA
1979 Raghavan and Birchard GA-based clustering algorithm
1982 Gerardy Probabilistic automaton identification
attempt via GA
1984 Gordon Adaptive document description using GA
1985 Rendell GA search for game evaluation function
1987 Raghavan and Agarwal Adaptive document clustering using GAs
ENGINEERING &
OPERATIONS RESEARCH
1981c Goldberg Mass-spring-dashpot system identification
with simple GA
1982 Etter, Hicks, and Cho Recursive adaptive filter design using a
simple GA
1983 Goldberg Steady-state and transient optimization of
gas pipeline using GA
1985a Davis Bin-packing and graph-coloring problems
via GA
1985b Davis Outline of job shop scheduling procedure
via GA
1985 Davis and Smith VLSI circuit layout via GA
1985 Fourman VLSI layout compaction with GA
1985 Goldberg and Kuo On-off, steady-state optimization of oil
pump-pipeline system with GA
1986 Glover Keyboard configuration design using a GA
1986 Goldberg and Samtani Structural optimization (plane truss) via
GA
1986 Goldberg and Smith Blind knapsack problem with simple GA
1986 Minga Aircraft landing strut weight optimization

with GA

Current Applications of Genetic Algorithms 127

TABLE 4.4 (Continued)

Year Investigators Description
ENGINEERING &
OPERATIONS RESEARCH
1987 Davis and Coombs Communications network link size
optimization using GA plus advanced
operators
1987 Davis and Ritter Classroom scheduling via simulated
annealing with metalevel GA
GENETIC ALGORITHMS
1962c Holland Outline for adaptive systems with programs
roving cellular computer
1968 Holland Development of theory of schemata
1971 Hollstien 2-D function optimization with mating and
selection rules
1972 Bosworth, Foo, and Zeigler GA-like operators on real genes with
sophisticated mutation
1972 Frantz Investigation of positional nonlinearity and
inversion
1973a Holland Optimal allocation of trials in a GA and the
two-armed bandit problem
1973 Martin Theoretical study of GA-like probabilistic
algorithms
1975 De jong Baseline parametric study of simple GA in
five-function test bed
1975 Holland Publication of ANAS
1977 Mercer GA controlled by metalevel GA
1981 Bethke Application of Walsh functions to schema
average analysis
1981 Brindle Investigation of selection and dominance in
GAs
1983 Pettit and Swigger Cursory investigation of GAs in
nonstationary search problems
1983 Wetzel Traveling salesman problem (TSP) via GA
1984 Mauldin Study of several heuristics to maintain
diversity in simple GA
1985 Baker Trial of ranking selection procedure on
De Jong test bed
1985 Booker Suggestion for partial match scores, sharing,
and mating restriction
1985 Goldberg and Lingle TSP using partially matched crossover
(PMX) and o-schema analysis
1985 Grefenstette and Fitzpatrick Test of simple genetic algorithm with noisy
functions
1985 Schaffer Multiobjective optimization using GAs with

subpopulations

128

Chapter 4 / Some Applications of Genetic Algorithms

TABLE 4.4 (Continued)

Year Investigators Description
GENETIC ALGORITHMS
1986a Goldberg Maximize marginal schema content for
optimal population size estimate
1986 Grefenstette GA controlled by metalevel GA
1987 Baker Reduction of stochastic errors in selection
procedures
1987 Bridges and Goldberg Extended analysis of reproduction and
crossover in I-bit GA
1987d Goldberg The minimal deceptive problem (MDP)
under reproduction and crossover
1987 Goldberg and Richardson Niche and species induction using sharing
functions
1987 Goldberg and Segrest Finite Markov chain analysis of
reproduction and mutation
1987 Goldberg and Smith Nonstationary function optimization using
diploid GAs
1987 Oliver, Smith, and Holland Simulation and analysis of permutation
recombination opérators
1987 Schaffer Analysis of selection procedure effects on
schema sampling
1987 Schaffer and Morishima String-encoded adaptive crossover trial
1987 Whitley Application of progeny testing to GA
selection
HYBRID TECHNIQUES
1985 Ackley Connectionist algorithm with GA-like
properties claimed
1985 Brady Traveling salesman problem via genetic-like
operators
1985 Grefenstette et al. TSP via knowledge-augmented genetic
operators
1987 Dolan and Dyer Proposal to use GA to learn connectionist
network topology
1987b Grefenstette Using nonpayoff, problem-specific
information in genetic search
1987 Liepins, Hilliard, Palmer, and Comparison of blind and greedy operators
Morrow on combinatorial problems
1987 Shaefer Globally modified adaptive representation
technique (ARGOT)
1987 Sirag and Weisser Simulated annealing-like control of genetic
operator frequency in the TSP
1987a Suh and Van Gucht Knowledge-based genetic operators in the

TSP

Current Applications of Genetic Algorithms

TABLE 4.4 (Continued)

129

Year Investigators Description
IMAGE PROCESSING &
PATTERN RECOGNITION
1970 Cavicchio Selection of detectors for binary pattern
recognition
1984 Fitzpatrick, Grefenstette, and Image registration via GA to minimize
Van Gucht image differences
1985 Englander Selection of detectors for known image
classification
1985 Gillies Search for image feature detectors via GA
1987 Stadnyk Explicit pattern class recognition using
partial matching
PARALLEL GA
IMPLEMENTATIONS
1976 Bethke Brief theoretical investigation of possible
parallel GA implementations
1981 Grefenstetie Brief theoretical investigation of several
parallel GA implementations
1987 Cohoon, Hegde, Martin, and Simulated parallel implementation of
Richards optimal linear arrangement
1987 Jog and Van Gucht Combined knowledge-based and

1987 Pettey, Leuze, and Grefenstette

1987b Suh and Van Gucht

1987 Tanese

PHYSICAL SCIENCES

1985b Shaefer

SOCIAL SCIENCES

1979 Reynolds

1981 Smith and De jong
1985a Axelrod

1985b Axelrod

parallelized GA

Parallel GA implementation on Intel
hardware using De Jong test bed

Localized selection in parallel GA search on
the TSP

Parallel GA implemented on 64-NCUBE
processor

Nonlinear equation solving with GA for
fitting potential surfaces

GA-like adaptation in model of prehistoric
hunter-gatherer behavior

Calibration of population migration model
using GA search

Simulation of the evolution of behavioral
norms with GA

Iterated prisoner’s dilemma problem
solution using GA

130

Chapter 4 / Some Applications of Genetic Algorithms

compressor

SUPPLY [1 2

DELIVERY
L)

e f

FIGURE 4.26 Serial gas pipeline schematic. From Goldberg (1983).

pressors. The difference in squared pressure varies as the square of the standard
volumetric flow rate:

I’S.I‘z-i-! - PDf = KlQ:in’ | L

where PS = suction pressure, PD = discharge pressure, 0 = standard volumetric
flow rate, K = pipe resistance coefficient, and i = pipe-compressor index. The
suction and discharge pressure, standard volumetric flow rate, and the power
consumed by a compressor station are related by equations of the following form:

HP, = QJA(PD/PS,) — B,),

where HP = power consumed, and A, B, C = compressor station constants. Fuel
for compression is removed directly from the pipeline flow stream itself at a
known, constant rate according to the following equation:

Qivr = (1 — r)0,
where r = fuel removal factor.

In this problem the objective is to minimize the power consumed subject to
maximum and minimum pressure and pressure ratio constraints:

min HP,.

In my work constraints were adjoined to the problem using a quadratic, external
penalty method as described in the previous chapter. Penalty coefficients were
sized to give significant penalties with nominal constraint violations.

In their formulation Wong and Larson chose to use the squared pressure
difference across each compressor station, U; = PD} = PS}, as their control vari-
able in this problem even though station power or pressure ratio might have been
a more physically appealing choice. For consistency, [adopted their selection and
coded each of the station U, variables as a four-bit, mapped, fixed-point integer
subcode. To form the overall string, I concatenated the 10 subcodes together in
station order, mapping each subcode between lower and upper limits of U/, =
0 psia® and U,,, = 7.5(10%) psia’.

Current Applications of Genetic Algerithms 131

Results from three numerical experiments with this problem are shown in
Figs. 4.27 and 4.28. In these experiments the following GA parameters were
adopted and held constant:

n =50 (population size)
p. =10 (crossover probability)

pll

0.001 (mutation probability)

Selection is performed using stochastic remainder without replacement. Figures
4.27 and 4.28 show the generation best-of-generation and average results respec-
tively. Figure 4.29 shows the pressure profile from the best of run 2 compared to
the optimal profile obtained by Wong and Larson via dynamic programming
(1968). In all three runs, near optimal results were obtained after examining an
infinitesimal portion of the discretized search space.

To test the simple GA in another, very different pipeline problem, | coded
Wong and Larson’s single-pipe transient control problem. In this problem the
objective is to minimize the energy of compression subject to maximum and
minimum pressure and pressure ratio constraints. The details of the transient
pipeline model 1 used are beyond the scope of this treatment. Suffice it to say
that simplified partial differential equations of continuity and momentum were

CosT IHJRSEP_C.ME?I 1073

% a 2 2 40 50 1]
GENERATION

FIGURE 4.27 Serial gas pipeline best-of-generation results. From Goldberg
(1983).

132

Chapter 4 / Some Applications of Genetic Algorithms

transformed to ordinary differential equations using the method of characteris-
tics. These equations were then solved numerically on a regular space-time grid
by a finite difference procedure. As in the steady-state problem, constraints were
adjoined to the problem using a quadratic, external penalty method. Further de-
tails of the model, objective function, and constraints are contained in the original
work (Goldberg, 1983). Here we concentrate on the coding and results obtained.

The time-continuous nature of the transient problem forced an additional
level of discretization as compared to the steady problem. In the steady problem
the compressor station control variables, the U, were simply coded as four-bit,
mapped subcodes and strung together to form the overall system coding. In the
transient problem, the control is a function, the schedule of input flow versus
time at the upstream end of the pipe. To solve the problem via genetic algorithm,
I discretized the continuous function by spacing flow rate values at 15 equidistant
points. In berween the points, the flow was assumed to vary linearly as shown in
Fig. 4.30. This type of discretization is well developed in the literature of inter-
polation theory and finite element methods. Other interpolating functions (step
function, higher degree polynomial, smooth spline, and others) could have been
used, but the linear interpolant was sufficiently accurate for the intended

purpose.

200000 CDSW “m‘:..

% » P 0 4 50 &
GENERATION

FIGURE 4.28 Serial gas pipeline generation average results. From Goldberg
(1983).

Current Applications of Genetic Algorithms 133

8
g
g
g
g
.3
g
ws
€8
2
(=)
£8
§ - S
--- constraint
2 — optimal
2 A computed
g . + + +
% 3) 11

5 7
STATION NUMBER

FIGURE 4.29 Serial gas pipeline pressure profile comparison, optimal versus
genetic algorithm computation. From Goldberg (1983).

=]
&
£s
i
3 ——— gpecified ocutflow
i 0O calculated inflow
2
]
g ' +
0.00 50.00 100.00 150.00

TIME - (MINUTES)

FIGURE 4.30 Transient gas pipeline control via genetic algorithm. Specified
ouiflow (demand) and calculated inflow from first genetic algorithm run (TR.1).
From Goldberg (1983).

134

Chapter 4 / Some Applications of Genetic Algorithms

Once the flow schedule was discretized, the 15 equally spaced flow values,
Q.1 =1,..., 15, determined a flow schedule. To code these 15 parameters as a
finite length string, 1 used the concatenated, mapped fixed-point coding de-
scribed in Chapter 3. In this problem, | mapped the Q, values between Q,,, =
100 MMCFD (millions of standard cubic feet per day) and Q.. = 200 MMCFD
over a three-bit code. An example string and decoded parameters are shown be-
low, where spaces have been added berween substrings for emphasis:

string: 000 111 000 000 111 111 000
parameter: Q, Q Q Q Q Qe Qs
value: 100 200 100 100 200 200 100

The results of two numerical experiments are presented in Figs. 4.31 and
4.32, the best-of-generation and generation average results, respectively. As with
the steady-state runs, near optimal results were found quickly after searching an
infinitesimal portion of the space. A more telling graph is presented in Fig. 4.33,
In this figure the best schedule of run 2 is compared to the optimal result on the
basis of downstream pressure. In the original work Wong and Larson found that
the optimal strategy was to hold the pressure at the downstream end at the min-
imum permissible value for the duration of the schedule. As Fig. 4.33 suggests,
the GA-calculated flow schedule caused the downstream pressure to follow this
quite closely.

COST (AVG. HP)
2600.00 2800.00 3000.00

220000 240000

E L) 2 n 4 S0 &0
GENERATION

FIGURE 4.31 Transient gas pipeline control best-of-generation results. From
Goldberg (1983).

Current Applications of Genetic Algorithms 135

200000 220000 2400.00 mmmmm 300000 _ 3200.00

8
o
2
)
3

GENERATION

FIGURE 4.32 Transient gas pipeline control generation results. From Goldberg
(1983).

e
g: B

O calculated

0.00 50.0 100.00 150.00
TIME - (MINUTES)

FIGURE 4.33 Transient gas pipeline control pressure time-history. Comparison
of optimal versus genetic algorithm computations. From Goldberg (1983).

136

Chapter 4 / Some Applications of Genetic Algorithms

Structural Optimization via Genetic Algorithm

Pipelines are not the only engineering system where genetic algorithms have
been used successfully. One area of current intéerest is structural optimization. In
a recent paper (Goldberg and Samtani, 1986) a graduate student and I have ap-
plied a genetic algorithm to the optimization of a 10-member plane truss. The
truss geometry is depicted in Fig 4.34. The same problem has been optimized
by other methods; however, we are interested in observing genetic algorithm
performance in many problems. Furthermore, the application of GAs to tougher
structural optimization problems where more standard techniques are inappro-
priate because of problem size, multimodality, or other difficulty is currently un-
der investigation in the area of composite materials (Minga, 1986, 1987).

The objective in this problem is to minimize the weight of the structure
subject to maximum and minimum stress constraints on each member. The de-
tails of the mathematical formulation are contained in the original paper. In our
work a standard matrix structural truss code was used to analyze each GA-
generated design. A three-operator GA consisting of roulette wheel selection, sim-
ple crossover, and mutation was used with constraints adjoined using a quadratic,
external penalty function. The design variables, the 10 member areas A, were
coded as a concatenated, mapped fixed-point string where each of the 10 four-
bit area substrings was mapped linearly between A, = 0.1 inand A, = 10
in’. Results from the independent runs of the GA are presented in Figs. 4.35 and
4.306, the best-of-generation and generation average results, respectively. Conver-
gence was not dissimilar frony that observed in other studies.

Ft (3) 3 (&) 1
@“i
E = 360"
& z &
{1) (8)
¢ L_35U" . 350."—,..2
v v
100% 100%

FIGURE 4.34 sketch of 10-member plane truss for structural optimization
(Goldberg and Samtani, 1986) Reprinted by permission from 9th Conference on
Electronic Computation ASCE, February, 1986.

Current Applications of Genetic Algorithms 137

cosT(LBSs)
(Thoussnds)

GENERATION
© RUN B —— OFTIMAL

o RUN NI + RUN g2
FIGURE 4.35 Structural optimization best-of-generation results (Goldberg and
Samtani, 1986). Reprinted by permission from 9th Conference on Electronic
Computation ASCE, February, 1986.

COST(LBE)
(Thousands)

GENERATION
& RU

o RUN #1 +* RUN #2 N B a OPTIMAL

FIGURE 4.36 Structural optimization generation average results (Goldberg and
Samtani, 1986). Reprinted by permission from 9th Conference on Electronic
Computation ASCE, February, 1986.

138

Chapter 4 / Some Applications of Genetic Algorithms

Medical Image Registration with Genetic Algorithms

S0 far we have examined current examples of GA application drawn from prob-
lems in engineering control and design. The next example considers the use of a
GA as part of a medical imaging system (Fitzpatrick, Grefenstette, and Van Gucht,
1984; Grefenstette and Fitzpatrick, 1985). Not only is this problem drawn from
a different field, but as we shall soon see, the problem no longer has a closed-
form mathematical representation of its fitness function.

In their system Fitzpatrick, Grefenstette, and Van Gucht used a simple genetic
algorithm to perform image registration as part of a larger digital subtraction
angiograpby (DAS) system. In DAS a doctor attempts to examine the interior of
a suspect artery by comparing two x-ray images, one taken prior to the injection
of dye into the artery and one taken following the injection. The two images are
digitized and subtracted pixel by pixel with the desired end result being a differ-
ence image that clearly outlines the interior of the subject artery. If the only
difference between the two images is the addition of the dye, image subtraction
should leave only the dye-coated region. Unfortunately, this is a big if. Slight
movements of the patient can cause the two images to go out of alignment,
thereby disturbing the difference image. As a result, the images must be aligned
or registered prior to calculation of the difference image.

This was where Fitzpatrick et al. used a genetic algorithm. In their procedure,
the preinjection image was transformed by a bilinear mapping (x'(x, ¥) = a, +
ax + a,y + axyand y'(x y) = by, + bx + b,y + b,xy) to a transformed
image, as shown in Fig. 4.37. Although the mathematical form of the transforma-
tion was fixed, the coefficients of the transformation were considered to be un-
knowns. A GA was used to search for coefficients that minimized the difference
between preinjection and postinjection images on the basis of mean absolute
image difference. To do this, the x and y coordinates at each of the four image
corners were coded as eight-bit substrings and each was mapped linearly be-
tween — 8 and + 8 pixels displacement (the full image was discretized on a 100
x 100 grid). The eight coefficients of the x and y bilinear mappings were then
uniquely determined by image displacement vectors at the four corners of the
image. The 64-bit concatenated strings were then used in a simple genetic algo-
rithm search for good transformations. Numerical experiments with both artifi-
cial images and real x-rays were successful.

One important consideration in this work was the computational cost of per-
forming a single function evaluation. On a 100 X 100 grid this requires some-
thing like 10,000 transformations and image difference calculations to calculate
the mean absolute image difference. Grefenstette and Fitzpatrick (1985) recog-
nized that it might be possible to perform a sampled image difference and achieve
a better overall registration in a fixed number of pixel difference operations. To
test this hypothesis, they performed numerical experiments where the number
of pixel differences calculated was held at 200,000 while they varied the number
of pixel samples per evaluation. The results of these experiments are shown in
Fig. 4.38. This remarkable graph shows that the optimal number of pixels to sam-

Current Applications of Genetic Algorithms 139

]
1 | |

Before transformation After transformation

FIGURE 4.37 Image registration before and after image transformation. Vectors
show image corner displacement (Grefenstette and Fitzpatrick, 1985). Reprinted
by permission.

ple was something like 10 (out of 10,000) for a fixed level of pixel difference
computation. This work seems to imply that in some sense GAs prefer a noisy
and crude function evaluation, if this in turn permits resources to be used for
exploring (even approximately) other points in the search space. This result is
not unexpected, because as the theory predicts, GAs can tolerate extremely noisy
function evaluation because it is the schemata, not the individual strings, which
are being sampled, propagated, and reevaluated in future generations. This tol-
erance of fuzzy function evaluation can pay handsome dividends in problems
where there is a choice between expensive and accurate computation or quick
and dirty guesstimation.

[2] -

FINRLHH'(E. PIXEL DIFFERENCE

i

50 100 150 200
SAMPLES PER EYALURTION

FIGURE 4.38 Performance versus samples per evaluation in GA image registra-
tion (Grefenstette and Fitzpatrick, 1985). Reprinted by permission.

140

Chapter 4 / Some Applications of Genetic Algorithms

Iterated Prisoner’s Dilemma Problem

For our last current example of GA search we consider a problem drawn from
political science and game theory, the iterated prisoner’s dilemma problem stud-
ied by Axelrod (1985b, 1987) and programmed by Forrest (1985a). This prob-
lem moves toward the machine learning problems and systems to be considered
in Chapters 6 and 7.

The prisoner's dilemma is a classic, some might say the archtypical, problem
of conflict and cooperation. In its simplest form, each of two players has a choice
of cooperating with the other or defecting. Depending on the two players' deci-
sions, each receives payoff according to a payoff matrix similar to the one shown
in Fig. 4.39. When both players cooperate they are both rewarded at an equal,
intermediate level (the reward, R). When only one player defects, he receives
the highest level payoff (the temptation, T') while the other player gets the suck-
er's just deserts (the sucker, §). When both players defect they each receive an
intermediate penalty (the penalty, P). The prisoner's dilemma has often been
cited as a simple yet realistic model of the inherent difficulty of achieving coop-
erative behavior when rewards are available for the successful miscreant. The
problem is called the prisoner’s dilemma because it is an abstraction of the situ-
ation felt by a prisoner who can either cut a deal with the prosecutor and thereby
rat on his partner in crime (defect) or keep silent and thereby tell nothing of the
misdeed (cooperate).

The problem is made more interesting by playing it repeatedly with the same
player or group of players, thereby permitting partial time histories of behavior
to guide future cooperation-defection decisions. This so-called iterated prisoner’s
dilemma has drawn interest from game theorists for a number of years. Computer
tournaments (Axelrod, 1985b) have pitted different computer procedures against
one another in two recent round robin contests. In both contests, a very simple
strategy called “tit for tat” was the overall winner among 76 total entrants. As the
name implies, tit for tat simply cooperates on the first move and then does what-
ever its opponent did on the previous move. In a sense tit for tat turns the golden
rule inside out by preaching “Do unto others as they have done unto you."”

That such a simple strategy won against more sophisticated opponents (with
more lines of computer code) was quite curious, to say the least, and Axelrod set
out to find other simple, deterministic strategies with the same or greater power,
To do this he used a genetic algorithm and a clever problem coding to search for
better strategies. Axelrod allowed decision rules to depend upon the behavior of
both parties during the previous three moves. On each of those moves there are,
of course, four possibilities: both players can cooperate (CC or R for reward), the
other player can defect (CD or § for sucker), the first player can defect (DCor T
for tempration), or both players can defect (DD or P for penalty) To code a
particular strategy, Axelrod first coded the particular behavioral sequence as a
three-letter string. For example, RRR would represent the sequence where both
parties cooperated over the three moves and S§P would represent the sequence
where the first player was played for a sucker twice and finally defected. The

Current Applications of Genetic Algorithms 141

Player 2

Decision Cooperate Defect

Cooperate (H-ﬁ_ a-s] (S-O, T-IO)

~o<®—T

Defect (T=10. 5=0)|(p~2. P=2)

FIGURE 4.39 A typical payoff matrix in the prisoner’s dilemma problem.

three-letter sequence was then used to generate a number between 0 and 63 by
treating the code as an integer base 4 where the behavioral alphabet is decoded
in the followingway: CC = R = 0,DC =T = 1,CD =S5 = 2, DD = P = 3 Inthis
way, for example, three mutual defections (PPP) would decode to a 63. Using this
coding, Axelrod then defined a particular strategy (over the past three moves) as a
64-bit binary string of Cs (cooperate) and D's (defect) where the 7th € or D corre-
sponds to the ith behavioral sequence. Using this scheme, for example,a D in position
0 would be decoded as a rule of the form RRR — D and a € in the third position
would be decoded as a rule of the form RRP — C

Actually, the situation is somewhat more complex than stated. Since the set
of rules generated by a 64-bit string depends upon the past three plays, behavior
at the game's beginning is indeterminate. To get around this problem, Axelrod
added six bits (six C's and D's) to the coding to specify a strategy's premises or
assumptions about pregame behavior. The six bits were used sequentially to sim-
ply specify the assumed behavior of both players prior to the game beginning. In
this way the normal rules could be used in conjunction with the premises to
specify opening game as well as middle game behavior. (In an earlier version
Axelrod assumed initial mutual cooperation, but he found that early game behav-
ior was very important to developing strategies that could beat tit for tat.) To-
gether, each of the 70-bit strings thus represented a particular strategy with 64
bits for the rules and six bits for the premises.

Having coded the problem, Axelrod set about finding better strategies for
playing this game. To give each strategy a representative test, Axelrod set up an
environment of eight opponents taken from his computer tournaments. Together
these eight opponents represented 98 percent of the behavior observed in the
computer tournament. Each of the string strategies in a population of size 20
played each of the eight opponents in a game of 151 moves. A fitness measure
was calculated by taking a weighted average of the point scores against each of
the eight opponents where the weights were chosen to closely match tourna-
ment conditions. From a random start, the genetic algorithm discovered strate-

142

Chapter 4 / Some Applications of Genetic Algorithms

gies that beat the overall performance of tit for tat. In Axelrod’s own words
(1985b, p. 13):

This is a remarkable achievement because to be able to get this added
effectiveness, a rule must be able to do three things. First, it must be able
to discriminate between one representative and another based upon only
the behavior the other player shows spontaneously or is provoked into
showing. Second, it must be able to adjust its own behavior to exploit a
representative that is identified as an exploitable player. Third, and per-
haps most difficult, it must be able to achieve this discrimination and
exploitation without getting into too much trouble with the other rep-
resentatives. This is something that none of the rules originally submitted
to the tournament were able to do.

These very effective rules evolved by breaking the most important de-
vice developed in the computer tournament, namely to be “nice,” that
is never to be the first to defect. These highly effective rules always de-
fect on the very first move, and sometimes on the second move as well,
and use the choices of the other player to discriminate what should be
done next. The highly effective rules then had responses that allowed
them to “apologize” and get to mutual cooperation with most of the
unexploitable representatives, and they had different responses which
allowed them to exploit a representative that was exploitable.

Perhaps we should wonder if policymakers in Western capitals are listening
to these results. Perhaps more to the point, we should observe that a genetic
algorithm was able to explore a large, discontinuous, and nondeterministic space
very quickly. Furthermore, we should stand back and look at this problem more
abstractly. Even though this problem is cast as one of optimization, it is really a
problem in machine learning because the structures we are modifying are rules
of behavior. Chapter 6 examines other ways of using genetic algorithms to learn
rules of behavior in complex problem domains.

SUMMARY

In this chapter we have explored the rise of genetic algorithms and their
establishment as a viable methodology in search and optimization problems. The
chapter has detailed the immediate prehistory of general algorithms, Holland’s
early theoretical developments, early applications in game-playing, biological
simulation, and function optimization, as well as more recent applications.

Pre-GA history was populated by a number of digital computer simulations
of natural genetic systems. Although some of these had the flavor of function
optimization, the spark of insight that transferred nature’s example to artificial
systems waited for Holland's early theoretical developments; these were closely
followed by the first practical GA implementations by Bagley and Rosenberg,

Problems 143

These and other early genetic algorithms were characterized by a busy com-
plexity and the proliferation of intricate operators. Early studies were varied in
their coverage, however, including such diverse concerns as adaptive game-
playing, biological simulation, pattern recognition, and function optimization. In
a word, we might characterize this time as the shotgun era of GAs: simulations
were loaded up with operators and complex mechanisms in quest of the holy
grail of rapid search. Careful experiments designed to isolate the importance of
individual mechanisms were rarely performed.

In some sense, however, the theoretical and computational tools were not
yet available to those pioneers. Holland's development of the theory of schemata
around the turn of the decade for the first time identified the fundamental im-
portance of structured recombination to the achievement of implicit parallelism.
Until that time researchers were not aware of what their genetic algorithms were
processing, and new operators were designed without concern for their effect on
high-performance building blocks. The development of this theory quickly led to
more carefully controlled experiments in function optimization, starting with
Hollstien’s dissertation and culminating in De Jong's pivotal work. De Jong’s dis-
sertation stripped away much of the complexity of earlier genetic algorithms and
was able to document the relative importance of reproduction and crossover. He
was also able to show the secondary role of mutation in artificial genetic search.

Following De Jong's study, applications of genetic algorithms proliferated.
Here, we have surveyed a smattering of these applications drawn from fields as
diverse as engineering, medicine, and political science. Although there is still
much to learn about the theory and application of genetic algorithms, the diver-
sity and effectiveness of genetic algorithms in many problem areas is cause for
optimism. The next chapter examines some of the advances in technique that
should continue to lead to improved GA performance.

B PROBLEMS

4.1. In Cavicchio’s pattern recognition detector selection problem, design a bi-
nary coding that permits 110 detectors, six pixels per detector for the 25 x 25
pixel array. Compare the length of this coding to Cavicchio's average length and
the minimum binary length calculated in the text. Also compare the number of
schemata available in both Cavicchio’s and the binary codings.

4.2. Estimate the survival probability of a schema of defining length 8 under
De Jong's multiple-point crossover operator with CP = 1, 2, 3, ... on a structure
of length £

4.3. In Rosenberg's adaptive crossover scheme, assume you have a structure of
length / = 10 and nine crossing factors x; = 1, 5, 6, 3, 2, 6, 7, 4, 5. Determine
the probability of a cross at site 4. Compare estimates of the survival probability
of the schema ***011**** under adaptive crossover and simple crossover.

144

Chapter 4 / Some Applications of Genetic Algorithms

4.4. A large population of points is uniformly distributed over the interval 0 =
x = 2, With a raw fitness function f(x) = x%, calculate the average expected raw
fitness. If power law scaling /' = f* assuming & = 1.005, is used to scale the raw
fitness, calculate the average expected scaled fitness. Calculate the expected
number of copies under the usual reproduction of the original raw average point
before and after scaling.

4.5. In a ranking method, assume the median population member is assigned
one copy. If the highest ranking population is assigned MAX copies, calculate a
formula relating the population size and MAX to the number of copies received
by the lowest ranking population member, MIN. Assume a straight line variation
in copy allocation. What restrictions (if any) exist on the values of MAX and MIN?

4.6. In the serial gas pipeline problem (Goldberg, 1983) with the 10 U, values
U, = 0,7.5(10%), 2(10%), 1(10%), 0, 0, 7.5(10%), 5(10%), 0, 7.5(10%), construct the
40-bit, mapped binary, concatenated string where the U, map from U, = 0 to
Upe = 7.5(10%) psia®.

4.7. In the transient gas pipeline problem (Goldberg, 1983) with the 15 three-
bit @, values, construct a string representation of a sine wave with mean 150
MMCEFD and amplitude 50 MMCFD and a period of 140 minutes, The O, map
from Q,,, = 100 to Q,,, = 200 MMCFD and they are spaced at 10-minute inter-
vals starting at time 0.

4.8. In Grefenstette and Fitzpatrick’s image registration problem for digital an-
giography subtraction, the postinjection image (100 X 100 pixels) is mapped by
bilinear transformations so the transformed coordinates are related to original
coordinates by mappings of the following form:

x' = ay + ax + a,y + ayxy and

¥ = by + bx + b,y + bxy

Transformations are coded as x and y displacements of the four corners of the
image (in pixel units). If a string indicates a displacement of the lower right-hand
corner of the image by + 3 units in the x direction and displacement of the upper
right-hand corner of the image by + 5 units in the x direction and + 8 units in
the y direction, and there are no other displacements, calculate a set of &, and b,
for the bilinear transformations. Assume that the origin is at the lower left corner
of the image prior to transformation.

4.9. Derive a relationship between De Jong’s on-line performance measure x,(1)
and population average fitness f,. ().

4.10. In the iterated prisoner’s dilemma problem, suppose the defection-cooper-
ation decision depends upon the last five moves. Design a coding for the rule sets
that implements rules analogous to Axelrod’s 70-bit coding for rules over the past
three moves.

Computer Assignments 145

B COMPUTER ASSIGNMENTS

A. Integrate select2, stochastic remainder selection without replacement into
the simple genetic algorithm SGA.

B. Develop a ranking procedure that gives one copy to the population mean,
MAX copies to the population best, with linear variation of copies assumed every-
where else. Use stochastic remainder selection after ranking and assignment.

C. Develop a multiple-point crossover procedure similar to De Jong's with pa-
rameter CP (number of crossover points).

D. Develop a statistical routine to track population fitness standard deviation
and then create a routine for sigma (o) truncation.

E. Develop a variation of the simple genetic algorithm that uses overlapping
populations and generation gap G. Implement a crowding operator similar to De
Jong's. Test the procedure on a multimodal function like F5 and contrast the
results to those using a GA without crowding,

F. Compare and contrast alternative selection methods.
G. Compare and contrast alternative scaling schemes,

H. Compare and contrast alternative ranking procedures.

Advanced Operators
and Techniques in
Genetic Search

The first few chapters of this book were confined to simple genetic algorithms—
GAs guided largely by the machinations of three operators: reproduction, cross-
over, and mutation. With this focus, we have been able to see, both theoretically
and empirically, the central role of unnatural selection and randomized, struc-
tured recombination in artificial genetic search. In our zeal to keep things simple,
we have, however, neglected several interesting natural operators and phenom-
ena. In this chapter we abstract and consider the role of these mechanisms as we
attempt to improve upon the robustness of simple GAs. The efforts and coverage
are limited by those things that have already been tried and by the current state
of knowledge concerning natural genetic mechanisms. Despite these limitations,
the abstraction, analysis, and implementation of advanced operators and tech-
niques are the most fruitful avenues for further improvement of genetic
algorithms.

We consider low-level operators such as dominance, inversion, intrachro-
mosomal duplication, deletion, translocation, and segregation. We induce niche
exploitation and speciation through higher level, population-oriented operators
such as migration, marriage restriction, and sharing functions. We consider re-
lated work in multicriteria optimization. We also examine knowledge-augmented
genetic operators and other methods of using problem-dependent, nonpayoff in-
formation. Finally, we catalog some current efforts aimed at using GAs on emerg:
ing parallel computers.

148

Chapter 5 / Advanced Operators and Techniques in Genetic Search

DOMINANCE, DIPLOIDY, AND ABEYANCE

Readers with some training in natural genetics have probably been puzzled why
the discussion so far has ignored diploidy (pairs of chromosomes) and dominance
(an important genotype-to-phenotype-mapping). After all, don't most elementary
genetics textbooks start with a discussion of Mendel's pea plants and some men-
tion of dominance? We have postponed this exercise intentionally to stress the
fundamental importance of selection and structured, randomized recombination.
Nonetheless, the existence of so many successful diploid and polyploid organisms
begs us to question whether diploidy and dominance can be put to good use in
artificial genetic search. This section reviews the diploid genotype and domi-
nance operators to explain their roles in shielding alternate solutions from ex-
cessive selection.

So far we have considered only the simplest genotype found in nature, the
haploid or single-stranded chromosome. In this simple model, a single-stranded
string contains all the information relevant to the problem we are considering,
While nature contains many haploid organisms, most of these tend to be relatively
uncomplicated life forms. It seems that when nature wanted to build more com-
plex plant and animal life it had to rely on a more complex underlying chromo-
somal structure, the diploid or double-stranded chromosome. In the diploid form
a genotype carries one or more pairs of chromosomes (called homologous chro-
mosomes), each containing information for the same functions. At first this re-
dundancy seems unnecessary and confusing. Why keep pairs of genes that decode
to the same function? Furthermore, when the pair of genes decode to different
function values, how does nature decide which allele to pay attention to? To
answer these guestions, let’s consider a diploid chromosomal structure where
different letters represent different alleles (different gene function values):

AbCDe
aBCde

Each position (locus) of a letter represents one allele; the capital form and the
lowercase form represent the alternative alleles at that position. In nature each
allele might represent a different phenotypic characteristic (or have some nonlin-
ear or epistatic effect on one or more phenotypic characteristics). For example,
the B allele might be the brown-eyed gene and the b allele might be the blue-
eyed gene. Although this scheme of thinking is not much changed from the hap-
loid (single-stranded) case we have already considered, one difference is clear.
Because we now have a pair of genes describing each function, something must
decide which of the two values to choose because, for example, the phenotype
cannot have both brown and blue eyes at the same time (unless we consider, as
nature sometimes does, the possibility of intermediate forms, but we shall not
concern ourselves with that possibility here).

The primary mechanism for eliminating this conflict of redundancy is
through a genetic operator that geneticists have called dominance At a locus, it
has been observed that one allele (the dominant allele) takes precedence over

Dominance, Diploidy, and Abeyance 149

(dominates) the other alternative alleles (the recessives) at that locus. More spe-
cifically, an allele is dominant if it is expressed (it shows up in the phenotype)
when paired with some other allele. In the preceding example, if we assume that
all capital letters are dominant and all lowercase letters are recessive, the phe-
notype expressed by the example chromosome pair may be written:

AbCDe

aBCde ABCDe

At each locus we see that the dominant gene is always expressed and that the
recessive gene is only expressed when it shows up in the company of another
recessive. In the geneticist’s parlance we say that the dominant gene is expressed
when beterozygous (mixed, Aa — A) or homozygous (pure, CC — C) and the
recessive allele is expressed only when homozygous (ee — ¢).

The mechanics of diploidy and dominance seem relatively clear. On a more
abstract level, we can think of dominance as a genotype-to-phenotype or a geno-
type reduction mapping. Yet, if we continue to ponder the nature and action of
diploidy and dominance, we find them really quite bizarre. Why does nature dou-
ble the amount of information carried within the genotype and then turn around
and cut by half the gquantity of information it uses? On the surface this seems
wasteful and unnecessarily tedious; yet nature is no spendthrift, nor is she given
to whimsy or caprice. There must be good reason for the added redundancy of
the diploid genotype and for the masking or shielding of the dominance operator.

Diploidy and dominance have long been the object of genetic study, and
numerous theories and explanations of their role have been put forth. The theo-
ries that make the most sense in the context of artificial genetic search hypoth-
esize that diploidy provides a mechanism for remembering alleles and allele
combinations that were previously useful and that dominance provides an oper-
ator to shield those remembered alleles from harmful selection in a currently
hostile environment. In a natural context, we can understand the need for such
a distributed, long-term memory and for a means of protecting that memory
against rapid destruction. Over the course of the evolution of life on earth, the
planet has undergone many changes in environmental conditions. From hot to
cold and back to moderate temperatures, from dark to light to somewhere in
berween, there have been many dramatic and rapid shifts. The most effective
organisms have been those able to adapt most rapidly to the changing conditions.
Animals and plants with diploid or polyploid structure have been the most ca-
pable of surviving, because their genetic constitution did not easily forget the
lessons learned prior to previous environmental shifts. The redundant memory
of diploidy permits multiple solutions (to the same problem) to be carried along
with only one particular solution expressed. In this way old lessons are not lost
forever, and dominance and dominance change permit the old lessons to be re-
membered and tested occasionally.

A favorite natural example of the long-term memory induced by diploidy and
dominance can be found in the shifts in population balance of the peppered moth
in Great Britain during the Industrial Revolution. The wild form (and originally

150

Chapter 5 / Advanced Operators and Techniques in Genetic Search

the dominant form) of this lepidopteran had white wings with small black specks.
Prior to the Industrial Revolution, this coloration was effective camouflage
against birds and other beasts of prey in the moth's natural habitat, lichen-covered
trees. In the middle of the nineteenth century, black forms were caught in the
neighborhood of industrial towns. Careful experiments by Kettlewell (Berry,
1965) showed that the speckled version was advantageous in the pristine setting,
while the melanic (dark) form was advantageous in the industrial environment
where pollution had killed off the lichen covering the tree trunks. It turned out
that the melanic forms were controlled by a single dominant gene, indicating that
a shift in dominance had occurred. When the balance shifted toward the dark-
ened form, the darkened form became dominant and the speckled form was held
in abeyance. Note that the melanic form was not a new invention; this was no
case of fortuitous mutation magically concocting the needed form. Instead, the
black form had been invented earlier, perhaps in response to forests where lichen
was naturally suppressed. When the by-products of industry caused the lichen to
disappear, the melanic form was sampled more frequently and then evolved to
be the dominant form. With this alternative solution held in the background, the
peppered moth was easily able to adapt rapidly to the selective pressures of its
changing environment.

In this example we see how diploidy and dominance permit alternate solu-
tions to be held in abeyance—shielded against overselection. We also see how
dominance is no absolute state of affairs. Biologists have hypothesized and proven
that dominance itself evolves. In other words the dominance or nondominance
of a particular allele is itself under genic control. Fisher's work on the evolution
of dominance (1958) may be referenced for further biological detail. Here we
examine some of the diploidy-dominance schemes used in artificial genetic
search to see how they handle the representation of the structure, the dominance
operator, and the evolution of dominance.

Diploidy and Dominance in GAs, a Historical Perspective

Some of the earliest examples of practical genetic algorithm application con-
tained diploid genotypes and dominance mechanisms. In Bagley's dissertation, a
diploid chromosome pair mapped to a particular phenotype using a variable dom-
inance map coded as part of the chromosome itself (Bagley, 1967, p. 136):

Each active locus contains, besides the information which identifies the
parameter to which it is associated and the particular parameter value, a
dominance value. At each locus the algorithm simply selects the allele
having the highest dominance value. Unlike the biological case where
partial dominance may be permissible (resulting, for example, in speck-
led eyes), our interpretation demands that only one of the alleles of the
homologous loci be chosen. The decision process in the case of ties
(equal dominance values) involves position effects and is somewhat

Dominance, Diploidy, and Abeyance 151

complicated so that it will be necessary to outline the process in some
detail.

One of the chromosomes is arbitrarily selected to be the “key” chromo-
some and its sites are examined in turn proceeding from left to right.
Each time an active locus is discovered, the contents of its homologous
locus are retrieved from the other chromosome. The dominance values
are compared and the allele which is associated with the highest domi-
nance value is selected. If the dominance values are identical, the domi-
nance follows the key chromosome. That is, the nearest active site on
the key chromosome to the left of site [sic] under examination is
checked. If the locus at that site was dominant, the present locus on the
key chromosome is set to be dominant, otherwise the homolog domi-
nates. If the locus under examination happens to occupy the initial active
site on the key chromosome, the key locus dominates.

The introduction of a dominance value for each gene allowed this scheme to
adapt with succeeding generations. Unfortunately, Bagley found that the domi-
nance values tended to fixate quite early in simulations, thereby leaving domi-
nance determination in the hands of his somewhat complicated and arbitrary
tie-breaking scheme. To make matters worse, Bagley prohibited his mutation op-
erator from processing dominance values, thereby further aggravating this pre-
mature convergence of dominance values. Additionally, Bagley did not compare
haploid and diploid schemes, and in all of his cases the environment was held
stationary. In the end the convergence of dominance values at all positions led to
an arbitrary, random-choice dominance mechanism and inconclusive results.

Rosenberg’s (1967) biologically oriented study contained a diploid chro-
mosome model; however, since biochemical interactions were modeled in some
detail, dominance was not considered as a separate effect. Instead, any dominance
effect in this study was the result of the presence or absence of a particular en-
zyme. The enzyme could then inhibit or facilitate a biochemical reaction, thus
controlling some phenotypic outcome.

Hollstien's study (1971) included diploidy and an evolving dominance mech-
anism. In fact Hollstien described two simple, evolving dominance mechanisms
and then put the simplest to use in his study of function optimization. In the first
scheme, each binary gene was described by two genes, a modifier gene and a
functional gene. The functional gene took on the normal 0 or 1 values and was
decoded to some parameter in the normal manner. The modifier gene took on
values of M or m. In this scheme 0 alleles were dominant when there was at least
one M allele present at one of the homologous modifier loci. This resulted in a
dominance expression map like the one displayed in Fig. 5.1. Hollstien recog-
nized that this two-locus evolving dominance scheme could be replaced by a
simpler one-locus scheme by introducing a third allele at each locus. In this trial-
lelic scheme, Hollstien drew alleles from the 3-alphabet {0, 1, 2}. In his scheme
the 2 played the role of a dominant “1" and the 1 played the role of recessive “1.”
The dominance expression map he used is displayed in Fig. 5.2. The action of this

152

Chapter 5 / Advanced Operators and Techniques in Genetic Search

oM Om ™ 1m
om o o 0 0
om 0 o] 1
M o 0 1 1
m 0 1 1 1

FIGURE 5.1 Two-locus dominance map. After Hollstien (1971).

mapping may be summarized by saying that both 2 and 1 map to “1,” but 2
dominates 0 and 0 dominates 1. Holland (1975) later discussed and analyzed the
steady-state performance of the same triallelic scheme, although he introduced
the clearer symbology {0, 1,, 1} for Hollstien's {0, 1, 2}.

The Hollstien-Holland triallelic scheme is the clearest, simplest scheme sug-
gested for artificial genetic search thus far, combining both dominance map and
allele information at a single position. With this scheme the more effective allele
becomes dominant, thereby shielding the recessive. Minimum excess storage is
required (half a bit extra per locus) and furthermore, dominance shift can easily
be handled as a mutationlike operator, mappinga 2toa 1 (a 1 to a 1, using
Holland's notation) and vice versa. Despite the clarity of the scheme, Hollstien's
results with diploidy and dominance were mixed. Although his Breed Type 11l
simulations maintained better population diversity (as measured by population
variance) than did his haploid simulations, there was no significant overall im-
provement in average or ultimate performance. This seems surprising until we
recognize that his test bed contained only stationary functions. If the purpose of
dominance-diploidy is shielding or abeyance, we should only expect significant
performance differences between haploid and diploid genetic algorithms when

o 1 2
o] 0 1] 1
1 0 L] 1

FIGURE 5.2 Single-locus, triallelic dominance map. After Hollstien (1971),

Dominance, Diploidy, and Abeyance 153

the environment changes with time. It is surprising in this light that such shifts
were not studied in conjunction with this operator.

Brindle (1981) performed experiments with a number of dominance
schemes in a function optimization setting. Unfortunately, the test functions and
codings she used have been questioned. Furthermore, she ignored previous work
in artificial dominance and diploidy, and a number of schemes she developed
were without theoretical basis or biological precedent.

She considered a total of six schemes:

. Random, fixed, global dominance

. Variable, global dominance

. Deterministic, variable, global dominance

. Choose a random chromosome.

. Dominance of the better chromosome

6. Haploid controls diploid adaptive dominance.

W R L I e

In the random, fixed, global dominance scheme, dominance of binary alleles is
determined for all loci, for all time at the beginning of a run. A single dominance
map is recorded by flipping an unbiased coin at each locus. Thereafter, the dom-
inant allele is expressed whether carried singly (heterozygous) or in pairs (homo-
zygous), and the recessive allele is expressed only when carried in pairs
(homozygous).

The variable global dominance map is a scheme where the probability of
dominance of a 0 or a 1 at a particular locus is calculated as the proportion of 0's
or 1's in the current generation. After calculating the proportion of 0's and 1's at
each locus, the expression of alleles at each locus is performed as determined by
successive Bernoulli trials for heterozygous loci.

In the deterministic, variable, global dominance scheme, the proportion of
0's and 1's is again calculated at each of the loci; however, with this mechanism,
the majority rules, and the allele with the greatest proportion is declared to be
the winner (the dominant allele).

In Brindle’s scheme of dominance of the random chromosome, a chromo-
some is selected at the flip of an unbiased coin and all its alleles are assumed to
be dominant. This is, of course, equivalent to selecting and using one of a ho-
mologous pair of chromosomes at random (nothing the recessive chromosome
carries can change the outcome of the mapping).

The scheme of dominance of the better chromosome evaluates the fitness of
both chromosomes and chooses the better chromosome as dominant.

In the scheme in which the haploid controls the diploid, a third chromosome
(haploid) carries an adaptive dominance map to determine the expression of the
normal diploid pair (Brindle, 1981, p. 115):

The construction of a map which benefits an organism in this manner
may best be achieved by allowing the genetic algorithm to develop dom-
inance maps dynamically. Each individual in the population carries a
third chromosome which acts during evaluation as the dominance map
for that individual. During the reproductive cycle, this chromosome be-

154

Chapter 5 / Advanced Operators and Techniques in Genetic Search

haves like a haploid organism, recombining with the dominance chro-
mosome of the second parent during mating, It mutates with the same
frequency as the homologous chromosomes. . . . Good dominance maps
should develop in parallel with good organisms.

This scheme is the most natural of the schemes she adopted. Like Hollstien's
(1971) and Bagley's (1967) earlier schemes, this method uses an adaptive dom-
inance map; however, Brindle completely separated the dominance map (the
modifying genes) from the normal chromosome (the functional genes). From a
biological viewpoint this seems strange. Genotypes in nature are not half diploid,
half haploid. Furthermore, it seems that a modifying gene should be fairly tightly
linked to its corresponding functional gene to create a rarely disrupted (by the
action of crossover) building block. The separation Brindle imposes effectively
destroys linkage between the dominance map and the functional genes.

There are objections to her other schemes as well. Two of the schemes re-
quire global information to guide dominance decisions at a local level. Earlier we
questioned the use of metalevel genetic algorithms because they required global
information. We should have the same objection to using global information in
local dominance decisions. Once again we must ask where this global information
comes from in nature. This may seem like GA purism but it is not a case of sticking
to natural analogy for its own sake. The primary beauty of both natural and arti-
ficial genetic search is their global performance through local action. Once we
insert this or that global operator, we destroy this attractive feature. This is no
small matter if we are ultimately concerned with efficient implementation of
these methods on parallel computer architectures.

In her dissertation Brindle simulated and compared the six schemes, but be-
cause the test bed was inappropriate and because she only considered stationary
functions, diploidy and dominance were not well tested by this study.

More recent studies (Goldberg and Smith, 1987; R. E. Smith, 1987, 1988)
have focused on the role of dominance and diploidy as abeyance structures and
mechanisms. Smith and I have compared the performance of a haploid GA, a
diploid GA with fixed dominance map (1's dominate 0's) and a diploid GA with
Hollstien-Holland triallelic dominance map on a blind, nonstationary knapsack
problem. In the normal knapsack problem, the objective is to maximize the total
value of objects placed in a sack subject to one or more maximum weight con-
straints. Mathematically, the problem may be written succinctly as follows:

max Zu,x, where x, € {0, 1}
subject to Zw,x, = W.

In a blind knapsack problem, the algorithm, of course, has no knowledge of prob-
lem structure, values ¢, or weights w,. In this case the problem was complicated
by making the weight constraint a periodic function of time such that
w(t) € {wW,, W }and every T, generations the weight shifts to the other value.
Figures 5.3—5.6 compare a haploid GA to a simple diploid GA. The haploid GA is

Dominance, Diploidy, and Abeyance 155

#0

Joannnnnnnnnnn
: o
L UUUUUH UL

Generation #

FIGURE 5.3 Nonstationary knapsack problem, haploid run population average
results (Goldberg and Smith, 1987).

Haploid
Best of Generatlon

————*Tﬂv—r"ﬂ

B0
70
B0 -
50 =
]
30 -

10 ~

o-—-i—u-——J—-b—L-——-;——-b—-———-b-

o 100 200 300 400
Generation §

FIGURE 5.4 Nonstationary knapsack problem, haploid run best-of-generation
results (Goldberg and Smith, 1987).

156

Chapter 5 / Advanced Operators and Techniques in Genetic Search

Simple 1 Dominates O
Ganeration Average

o 100 200 300 400
Generation §

FIGURE 5.5 Nonstationary knapsack problem, simple diploid run (1 dominates
0) population average results (Goldberg and Smith, 1987).

Simple 1 Dominates O
Best of Generation

®0
a8
L.1.]
B84
82
8o

T8
T4
72 o

Fitness

88 -

88

84 =

82

&0 T Y T T

] 100 200 300 400
Generation #

FIGURE 5.6 Nonstationary knapsack problem, simple diploid run (1 dominates
0) best-of-generation results (Goldberg and Smith, 1987).

Dominance, Diploidy, and Abeyance 157

unable to track the oscillation, while the simple diploid scheme is able to switch
to some extent. Experiments with the Hollstien-Holland triallelic scheme were
also performed. These results are a significant improvement over the original
fixed dominance map, as should be expected. Figures 5.7 and 5.8 show genera-
tion average and generation best results for the same nonstationary, blind knap-
sack problem. Because the triallelic scheme permits evolution of dominance at
each locus, the population is able to adapt more quickly and more fully than is
possible in cases with either a fixed dominance map or haploid structure,

An Analysis of Dominance and Diploidy in GA Search

The empirical evidence supporting diploid structures and dominance operators
in GA search is starting to gel. Where once diploidy and dominance were looked
1o as a magic elixir to cure all GA ills, the focus is now on their important role in
shielding once successful schemata from overzealous extinction. Current inves-
tigations have started to examine dominance and diploidy in nonstationary prob-
lems, and future work should confirm this role. As the empirical evidence has
started to appear, so has the theoretical case for diploidy and dominance become
much clearer. This section examines how the combined action of diploidy and
dominance prolongs the life of currently weak, but once useful, alternatives. We
also see how diploidy and dominance permit a lower background mutation rate
to maintain a certain level of diversity.

To understand the effect of diploidy and dominance, we first consider how
they change our expectation of schemata growth or decay. Referring to Chapter
2, the number of schemata H contained in the next population (written as
m(H, t +1)) is related to the number in the current population (m(H, t)) by
the following equation:

fH)

m(H t + 1) = m(H, r}T[- p. B(")

=

s O(H)pm]

In this equation, p_and p,, are the crossover and mutation probabilities respec-
tively, f(H) is the schema average fitness, fis the population average fitness, 8(H)
is the defining length of the schema (distance between outermost fixed posi-
tions), and o(H) is the schema order (number of defined positions). With the
addition of dominance and diploidy, this equation is still an accurate description
of the growth or decay of schemata if we recognize the effect of dominance and
allele expression on the schema average fitness, f{H). This difference becomes
most striking if we separate the physical schema H from the expressed schema
H, In other words, a real or physical schema H may or may not be expressed,
depending upon its state of dominance and its current homologous partner. This
requires the following modification to the schema growth equation:

J(H,)[l_pca()

m(H, t + 1)=m(H t) 7 =

= o(H) p,,]

Chapter 5 / Advanced Operators and Techniques in Genetic Search

Triallelic
Generatien Average

L+

70

a0

10 ~ 1

]
0 T 1!'_' T T T -ﬁ_‘ T
+] 100 200 300

Generation #

FIGURE 5.7 Nonstationary knapsack problem, triallelic diploid run population
average results (Goldberg and Smith, 1987).

Triallelic
Best of Generation

100 200 300 400
Generation #

FIGURE 5.8 Nonstationary knapsack problem, triallelic diploid run, best-of-
generation results (Goldberg and Smith, 1987).

Dominance, Diploidy, and Abeyance 159

Everything remains the same, except the average fitness of the schema H, f(H),
is replaced by the average fitness of the expressed schema f,, f(H,). In the case
of a fully dominant schema H, the average fitness of the physical schema always
equals the expected average fitness of the expressed schema H,:

AH) = flH,).

In the case of a dominated schema H, the hope is, of course, that the average
fitness of the expressed schema is greater than or equal to the average fitness of
the physical schema:

SCH,) = f(H).

This situation is most likely to occur when the dominance map is permitted to
evolve as was suggested earlier. If this situation does arise, then the currently
deleterious, dominated schema will not be selected out of the population as rap-
idly as in the corresponding haploid situation. This is how dominance and diploi-
dy shield currently out-of-favor schemata.

To make this argument more quantitative, let’s consider a simple case where
only two alternative, competing schemata may be expressed, one dominant and
the other recessive. Physically this represents two alleles at a single locus or two
multilocus schemata that have come to dominate a particular set of loci. In either
case the dominant alternative is assumed to be expressed whether heterozygous
or homozygous and that the recessive alternative is expressed only when homo-
zygous. Rearrangement of the schema growth equation permits us to calculate
the proportion of recessive alleles, P! in successive generations, £ If we assume
that there are only two alternatives, the dominant form having a constant ex-
pected fitness value of f, and the recessive f,, the proportion of recessives ex-
pected in the next generation may be calculated (Goldberg and Smith, 1987) as
follows:

P'+r(1 - P)]

Pf+|=PIK
[(1 —)PP+ r

where r = f,/f,, and K = crossover-mutation loss constant.

A similar equation may be derived for the haploid case where the deleterious
alternative (the recessive) is always expressed when present in a haploid
structure:

K

PJ'-I—I =PJ' s
P+ r(1 — PY)

Proportion ratio (P(t + 1)P(t)) versus proportion P(t) is plotted for haploid
and diploid cases in Fig. 5.9. The most important conclusion we can draw from
this graph is that for a comparable proportion of alleles the haploid case always
destroys more (always has a smaller proportion ratio) than the corresponding
diploid case. Of course, this does not imply that the diploid case has a low on-
line performance measure. In fact, the sampling rate remains low (proportional

160 Chapter 5 / Advanced Operators and Techniques in Genetic Search

Diploidy (limiting) vs. R=2

0.9000

0.8000

0.6000
0.00000B+00

L
5.00000B-01 1.00000B+0

o mes . h‘;lazpoﬂlmofrormuon R=2

FIGURE 5.9 Retention ratio P**"/P' versus proportion P’ for haploid (r = 2),
diploid (r = 2), and limiting diploid (r = =). From Goldberg and Smith (1987).

Haploid vs. Diploid

0.1000 ~

0.0000
o 10 20 a0 40 a0
Gensration Number
Haploid R=2 + DHpleid R=2 2

Limiting Dipleid

FIGURE 5.10 Proportion P versus generation ¢t for haploid (r = 2), diploid
(r = 2), and limiting diploid (r = «). From Goldberg and Smith (1987).

Dominance, Diploidy, and Abeyance 161

to P?) for the poor (recessive) alleles in the diploid case. In this way once suc-
cessful solutions are saved to fight another day without excessive sampling, with-
out excessive selection. Similar conclusions may be drawn by examining
recessive proportion time histories as shown in Fig. 5.10. Analogous results are
presented for the triallelic scheme in Smith (1988).

The previous analysis clearly demonstrates the long-term memory induced
by diploidy and dominance. Because of this effect, under diploidy and dominance
we expect that mutation should play an even smaller role in the operation of the
GA. Holland (1975) has presented an analysis of the steady-state mutation re-
quirements of diploid structures as compared to haploid structures.

For a haploid structure under selection and mutation it may be shown that
the proportion of recessive alleles in the next generation P'*! is related to the
proportion in the current generation, P', by the following equation:

F+1 =(l = E)F'*Pm(l _PI}_pule'

Here we have the sum of three terms, the proportion due to selection, the source
of alleles from mutation, and the loss of alleles from mutation. The e(t) factor is
the proportion lost due to selection and other operator losses. At steady state,
P71 = p' = P_ Solving for P, we obtain the following equation:

I —— -
2p, t e
This equation suggests that the final steady-state proportion of alleles is directly
proportional to the mutation rate (with large e and small p,,).
For a diploid structure under selection and mutation it may be shown that
the proportion of recessive alleles in the next generation is related to the number
in the current generation by the following equation:

P'*Y = (1 — 2ePYP' + 2p,(1 — 2P').

At steady state we obtain a relationship between the required mutation rate and
the steady proportion of recessive alleles:

Pu = € PY(1 — 2P,).

For small steady-state proportions of recessive alleles, P, << 1, this equation
suggests that the mutation rate required to keep a certain proportion of recessive
alleles available is proportional to the square of the proportion. Of course, the
presence of the same proportion of alleles in the diploidy case does not mean
that they will be sampled as frequently. Although the same proportion is in exis-
tence, they are sampled much less frequently (as the square of the proportion).
This underlines the need for occasional dominance changes so stored alleles can
be sampled in the current context.

162

Chapter 5 / Advanced Operators and Techniques in Genetic Search

Computer Implementation of Triallelic Diploidy
and Dominance

Only minor modifications are required in our simple genetic algorithm (SGA)
code to implement the Holland-Hollstien triallelic dominance-diploidy scheme,
The data structures of SGA must change to accommodate the homologous pairs
of chromosomes and the three alleles per locus. A modified data declaration for
the SGA with dominance (SGADOM) is shown in Fig. 5.11. In this declaration we
notice that the allele type is now defined over the integer subrange —1 ... 1 (it
was previously defined as a boolean type). With this subrange we intend for a
— 1 to map to a recessive 1 (a 1, in Holland notation), a0 tomap toa 0,and a 1
to map to a dominant 1 (a 1 in Holland notation). The dominance expression
map under this coding may be expressed by the greater than or equal to (=)
relation. This fact is used in the function mapdominance displayed in Fig. 5.12.
Dominance expression for a pair of homologous chromosomes is carried out
through locus-by-locus calls to mapdominance in the procedure dominance also
displayed in Fig. 5.13.

The details of offspring production under diploidy and dominance are some-
what different from those in the haploid case. In the procedure gametogenesis, a
homologous pair of chromosomes generates a pair of gametes which in turn are
fertilized by a second pair of gametes within the procedure fertilization. This
process flies in the face of biological reality to some extent; however, it does pay
attention to the important details, and the differences that do exist are there to

const maxpop = 100;
maxstring = 30;
version = "yl.0";
type allele = -1..1; { triallelic scheme (-1, 0, 1) 1}
chromosome = array[l..maxstring] of allele; { trits }
chrompack = array([l..maxploidy] of chromosome;
parentid = record xsite, parent:integer end;
idpack = array[l..maxploidy] of parentid;
individual = record
chrom:chrompack; { pack of chroms }
echrom:chromosome; { expressed chrom }
x, objective, fitness:real;
parents:idpack; { parent info }
end;
population = array[l..maxpop] of individual;
var oldpop, newpop:population; { non-overlapping }

popsize, lchrom, gen, maxgen:integer; { integer globals }

pcross, pmutation, sumfitness:real; { Real globals }
nmutation, ncross:integer; { Integer stats }
avg, max, min:real; { Real stats }

FIGURE 5.11 Triallelic dominance in Pascal (SGADOM): constant, type, and
data declarations.

Dominance, Diploidy, and Abeyance 163

function mapdominance(allelel,allele2:allele):allele;

| dominance map using > relation among (-1,0,1) }

begin
if (allelel >= allele2) then mapdominance := abs{allelel)
else mapdominance := abs(allele2)

end;

procedure dominance(var lchrom:integer;
var homologous:chrompack;
var expressed:chromosome);
{ express dominance - homologous pair --> single chrom }
var j:integer;
begin
for j:=1 to lchrom do
expressed| j] :=mapdominance(homologous(1,j],homologous(2,j])
end;

FIGURE 5.12 Triallelic dominance in Pascal (SGADOM), function mapdomi-
nance and procedure dominance.

procedure gauetogenesis(var ancestor,gamete: individual;
var lchrom, nmutation, ncross,
jparent:integer;
var pmutation, pcrossireal);
{ Create a pair of gametes from a single parent }
var j,jcross:integer;
begin
{ handle crossover and mutation }
crossover{ancestor.chrom[1], ancestor.chrem[2],
gamete.chrom[1], gamete.chrom[2],
lehrom, ncross, mmutation, jcross,
pcross, pmutation);
{ set parent and crossing pointers }
for § := 1 to maxploidy do with gamete do begin
chromid[j].parent := jparent;
chromid[j].xsite := jcross;
end;
end;

procedure fertilization(var chroml, chrom2:chromosome;
var parentl, parent2:parentid;
var newindividual:individual);

begin with newindividual do begin

chrom[1l] := chroml;

chrom[2] := chrom2;

chromid(1l] := parentl;

chromid[2] := parent2;

end; end;

FIGURE 5.13 Triallelic dominance in Pascal (SGADOM), procedures gameto-
genesis and fertilization.

164

Chapter 5 / Advanced Operators and Techniques in Genetic Search

minimize the deleterious effects caused by small finite populations often used in
artificial genetic search.

The creation of a new generation is controlled by the procedure generation,
as shown in Fig. 5.14. This procedure differs from the original version contained
in SGA as it accommodates the procedures gametogenesis and fertilization, As
in the earlier version, pairs of mates are first selected using the function sefect.
Thereafter gametogenesis is called twice, once for each mate. The procedure

function other(jl:integer):integer;
begin if (jl=1) then other := 2 else other := 1 end;

procedure generation;
{ Create a new generation through select, crossover, and mutation }
var §, jl, j2, matel, mate2, jcross:integer;
gametel, gametel:individual;
begin
j = 1;
repeat { select, generate gametetes until newpop is filled }
{ pick 2 mates }
matel := 2; {select(popsize, sumfitness, oldpop); pick pair of mates }
mate2 := 1; {select(popsize, sumfitness, oldpop); }
{ make & gametes to make 2 zygotes }
gametogenesis(oldpop[matel], gametel,
lchrom, nmutation, ncross, matel,
pmutation, pcross);
gametogenesis(oldpop[mate2], gametel,
lchrom, nmutation, ncross, matel,
pmutation, pcross);
{ flip honest coin to decide arrangement }
if f1ip(0.5) then begin j1 := 1; j2 := 1 end
else begin jl := 1; j2 := 2 end;
{ fertilize without replacment }
fertilization(gametel.chrom(jl], gamete2.chrom[j2],
gametel.chromid[{l], gamete2.chromid[i2l,
newpopljl);
j1 1= other{jl); j2 := other(j2);
fertilization(gametel.chrom[jl], gamete2.chrom[j2],
gametel.chromid[jl], gametel.chromid[j2],
newpop[j+1]);
{ express, decode, and evaluate objective function }
with newpop(j] do begin
dominance(lchrom, chrom, echrom);
x := decode(echrom, lchrom);
objective := objfunc(x);
end;
with newpop[j+1] do begin
dominance(lchrom, chrom, echrom);
% := decode(echrom, lchrom);
objective := objfunc(x);
end;
{ Increment population index }
ji=ji+2;
until j>popsize
end;

FIGURE 5.14 Triallelic dominance in Pascal (SGADOM), modified procedure
generation to include triallelic dominance and diploidy.

Dominance, Diploidy, and Abeyance 165

fertilization takes the two sets of gamete pairs and trades them off (without
replacement) to form two offspring. An unbiased coin is flipped to decide which
gamete fertilizes which and the designated exchange takes place. The objective
function evaluation occurs following fertilization, with lineage data and cross site
information stored for detailed reporting.

In addition to the aforementioned changes, minor modifications are also re-
quired in the mutation operator, initialization code, and reporting code. The miu-
tation function has been changed to reflect the presence of three alleles. To get
an expected 50-50 split of expressed 1's and 0's in the initial population, reces-
sive ones, zeroes, and dominant ones should be randomly chosen with probabil-
ities 0.25, 0.50, and 0.25 respectively. The reporting procedure writechrom has
also been rewritten to report the three alleles correctly. A percent sign (%) has
been used to represent the recessive one, 1, The changes in writechrom and
mutation are shown in Fig. 5.15.

function mutation(alleleval:allele; pmutation:real;
var nmutation:integer):allele;
{ Mutate an allele w/ pmutation, count number of mutations }
var mutate:boolean; temp:allele;
begin
mutate := flip(pmutation); { Flip the biased coin }
if mutate then begin
nmutation := nmutation + 1;
temp := alleleval + rnd(1,2); { Add one or two }
case temp of
-1: mutation := temp;
0: mutation := temp;
1: mutation := temp;
2: mutation = -1;
3: mutation := 0;
end {case}
end else
mutation i= alleleval; { No change }
end;

procedure writechrom(var out:text; chrom:chromosome; lchrom:integer);
{ Write a chromosome as a string of 1's (true's) and 0's (false's) }
var j:integer; ch:char;

begin
for j := lchrom downto 1 do
begin
case chrom[j] of
=11 ch 1= "%';
0: ch := "0';
1: ¢ch = "1';
end;
write(out,ch);
end;
end;

FIGURE 5.15 Triallelic dominance in Pascal (SGADOM), modified function mu-
tation and procedure writechrom to include triallelic dominance and diploidy.

166

Chapter 5 / Advanced Operators and Techniques in Genetic Search

INVERSION AND OTHER REORDERING OPERATORS

One article of faith that has carried us through earlier arguments related to ge-
netic algorithm power has been that short defining length, low-order, high-
performance schemata (we have called these building blocks) combine with
other such building blocks to form strings with above-average performance; how-
ever, the different application examples we have seen make us realize that many
of the coding decisions we make seem arbitrary. In this light, how do we know
that the schemata contained in a given coding in a given problem will lead to the
desired improvement? The bald truth is that we don't know, We cannot be sure
that an arbitrary coding leads to improvement using a simple genetic algorithm
in an arbitrary problem. At first this may seem disconcerting until we recognize
that nature is herself unsure of her codings and has devised operators to search
for better codings at the same time she searches for better sets of allele values.
In this section we examine these reordering operators to see if the same mech-
anisms can be used effectively in artificial genetic search.

The primary natural mechanism responsible for recoding a problem is the
inversion operator. Under inversion two points are chosen along the length of
the chromosome, the chromosome is cut at those points, and the end points of
the cut section switch places. At first this operator seems a bit strange if we view
it in the context of our simple artificial string chromosomes. For example, con-
sider the following eight-position string where two inversion sites are chosen at
random (perhaps sites 2 and 6 as marked by the * characters):

10111011

If we were to use the inversion operator blindly, we would obtain the following
string;

10011111

It is not at all clear how the inversion operator is helping us search for a new
representation. In fact, it looks as though it is just partially shuffling the alleles
within a string. The problem here is our simple representation. We have, since
the first chapter, assumed that an allele’s meaning is linked to its locus, its posi-
tion. In nature genes can be shuffled on a string and still be responsible for the
production of the same enzyme. In other words, in nature an allele’s meaning is
position-independent. To provide the same flexibility in our representation, let's
name our alleles using integers between 1 and 8 and see what happens when we
apply the inversion operator under the extended representation:
12345678
10111011

~ -~

Inversion and Other Reordering Operators 167

Now when we do the same inversion, we carry along the allele name information
as well:

12654378

10011111
Using this extended representation, the bit values retain their intended meaning
regardless of their position. In biological terms, this extended representation sep-
arates gene from locus. An interesting consequence of doing this is that a single
inversion operator acting alone has no immediate effect on string fitness. After
all, since the alleles are now named, switching their position on the string has no
effect on the way the string is decoded, and thus the fitness of the string remains
unaffected.

While it is now clear how the extended representation permits inversion to
act without jumbling allele meanings, it is not yet clear what positive contribu-
tion the inversion operator and the extended representation make to genetic
search. After all, we have just reasoned that a single inversion has no direct effect
on string fitness, so why does nature (and why should we) bother with this oc-
casional game of allelic musical chairs? We will consider the theory behind the
inversion operator in some detail later in this chapter; at this point, we simply
acknowledge how inversion might be useful in searching for good string arrange-
ments at the same time other genetic operators are searching for good allele sets,
If the current population contains bad orderings (where alleles with highly ep-
istatic or nonlinear interaction are spaced at great distances on the chromosome),
crossover will destroy important allele packets with high probability. On the
other hand, if a reordering operator can rearrange allele placement, then there is
some chance we can obtain good allele orderings that will subsequently permit
more efficient propagation of building blocks.

In 2 moment we will examine this argument more rigorously. In the next
section, we review past research into reordering operators in artificial genetic
search.

Reordering Operators in GAs, a Historical Perspective

Bagley's (1967) computer simulations contained an inversion operator. He im-
plemented the simple inversion operator and extended string representation dis-
cussed above. One of the decisions he faced was how to treat crosses between
nonhomologous pairs of strings. To see why this is important, consider a simple
cross between two strings, A and B:

i - 1234|5678
1011|1011
i
B_1265|43’?B
10011 1A

168

Chapter 5 / Advanced Operators and Techniques in Genetic Search

If we naively cross the strings using simple crossover, perhaps at cross site four
(marked by the | character), we obtain the two offspring strings as follows:

A,=1234|43‘?a
}0r1l11:1

I
B,=1255|5578
1001|1011

We notice immediately that neither of the offspring strings contains a full gene
complement, and in general this problem is the primary argument against per-
mitting simple crosses between arbitrarily ordered strings. Bagley adopted a
straightforward measure to eliminate this difficulty: he prohibited crosses be-
tween nonhomologous strings. Unfortunately, his results under these conditions
were disappointing (Bagley, 1967, p. 168):

The inversion results . .. were some what [sic] disappointing. The most
obvious effect of inversion is a large increase in the length of the runs.
Recall that one of the consequences of inversion is a decrease in the
effective crossover rate since crossover is inhibited between parts of
chromosomes which are not locus homologous. As we have seen, a lower
crossover rate has an adverse effect on the simulation and it is this effect
that was predominant in our results. The desirable consequence of in-
version, which is the appearance in the population of gametes whose
geographical gene linkages reflect combinations . . . , was not observed.

Bagley went on to attribute the lack of success with inversion to his problem
environment (a game-playing task). He concluded that the problem was insuffi-
ciently difficult (epistatic) to give inversion a good trial. Put another way, the
simple genetic algorithm worked too well without inversion for the inversion-
augmented GA to show either better rate of convergence or better ultimate con-
vergence. This problem (that the simple GA works too well) has reared its not-
too-ugly head more than once since Bagley’s study and has made it difficult to
show linkage effects in artificial genetic search. There were, however, other rea-
sons Bagley was unable to show an advantage for inversion. Recall that Bagley
allowed only homologous substrings to exchange during crossover. This essen-
tially prevents crosses between many pairs of population members. A more liberal
policy has been adopted by nature; other less restrictive policies have also been
used by later GA researchers interested in inversion.

Cavicchio’s (1970) study of genetic search in a pattern recognition detector
design task used an inversion operator with unrestricted inversion and subse-
quent crossing; however, recall from Chapter 4 that Cavicchio’s genes consisted
of pixel identification numbers grouped in detector clusters. With this represen-
tation, any inversion can be performed, always generating a viable chromosome.
Furthermore, subsequent crossing of pairs of strings at any point generate mean-
ingful new strings regardless of string ordering. Although these good properties
resulted from the problem-dependent coding he used, Cavicchio's results were
encouraging. In one set of experiments, relatively high values of crossover and

Inversion and Other Reordering Operators 169

inversion resulted in a good rate of convergence and a high level of ultimate
performance.

Frantz's (1972) study of epistasis in artificial genetic search was not as suc-
cessful in demonstrating the usefulness of inversion. He attempted several varia-
tions on inversion operators and mating rules in functions with differing degrees
of controlled nonlinearity. He tried two variations on inversion:

1. Linear inversion
2. Linear + end inversion

Linear inversion is simply Frantz's name for the simple two-point inversion op-
erator described earlier. Linear + end inversion performed linear inversion with
a specified probability (0.75). If linear inversion was not performed, end inver-
sion would be performed with equal probability (0.125) at either the left or right
end of the string: under end version the left or right end of the string was picked
as one inversion point and a second inversion point was picked uniformly at
random from points no farther away than one-half the string length. Linear + end
inversion was Frantz's attempt to minimize the tendency for linear inversion to
disrupt alleles located near the center of the string disproportionately to those
alleles located near the ends.
Frantz applied either of his inversion operators in one of two modes:

1. Continuous inversion
2. Mass inversion

In his continuous inversion mode, inversion was applied with specified inversion
probability, p,, to each new individual as the individual was created. In mass in-
version mode, no inversion took place until a new population was created; there-
after, one-half the population underwent identical inversion (using the same two
inversion points). Mass inversion was designed to eliminate the proliferation of
noninteracting subpopulations that accompanies strict-homologue mating.

Frantz tried four mating rules to prevent the usual problem with naive
crosses between homologous pairs of strings:

1. Strict homology mating
2. Viability mating

3. Any-pattern mating

4. Best-pattern mating

Strict homology mating is the same form adopted by Bagley where only homol-
ogous strings are permitted to mate. Viability mating permits an attempted cross
between nonhomologous strings; however, if the resulting “offstrings” do not
have a full gene complement, they are not inserted into the new population. In
any-pattern mating, two mates are randomly selected and one or the other is
chosen to be the prime ordering. The other string is mapped to the prime order-
ing and a simple cross is made. The mapping operation thereby guarantees the
viability of the cross. Best-pattern mating is the same as any-pattern mating except
the better of the two strings is chosen to determine the prime ordering.

170

Chapter 5 / Advanced Operators and Techniques in Genetic Search

Despite the number and variety of options attempted, Frantz was unable to
demonstrate clear position effect. Furthermore, he was unable to show clear ad-
vantage for inversion in any form, mode, or mating combination, The underlying
problem here was the problem environment adopted. Frantz used a linear com-
bination of bitwise linear and nonlinear functions each combining between six
and seven alleles on a length [= 25 string. The nonlinear functions used a table
lookup of the 2° or 27 alternatives among the six or seven alleles in the group.
Unfortunately, the functions he chose were insufficiently difficult to require in-
version. As Bethke (1981) has pointed out, not only must a GA-hard function be
epistatic, the epistasis must be misleading. In other words short, high-perfor-
mance schemata must point toward poor areas of the space. This was not the case
in Frantz's study, so the simple genetic algorithm without inversion was able to
find good solutions quickly.

After Frantz's study, other investigations of inversion and reordering opera-
tors were a long time coming. Holland (1975) makes brief mention of inversion,
presenting modifications to the schema theorem to include the approximate ef-
fect of simple inversion. Thereafter not much mention is made of reordering op-
erators until the 1985 International Conference on Genetic Algorithms and Their
Application. At that conference, several authors (Davis, 1985b; Goldberg and Lin-
gle, 1985; Smith, 1985) described the construction of reordering operators that
combine features of inversion and crossover into a single operator, While derived
independently, these operators are similar. We will consider each of these three
operators: partially matched crossover (PMX), order crossover (0OX), and cycle
crossover (CX).

PMX arose in considering ways to tackle a blind traveling salesman problem.
In the traveling salesman problem (TSP), a hypothetical salesman must make a
complete tour of a given set of cities in the order that minimizes his total distance
traveled. In the blind traveling salesman problem, the salesman has the same ob-
jective with the added restriction that he is unaware of the distance he travels
until he actually traverses a complete tour. The traveling salesman problem by
itself is difficult enough (it is a member of a class of problems believed to be
unsolvable in polynomial time) without imposition of the blindness restriction.
In considering ways to code the blind traveling salesman problem, it is difficult
to conceive of codings where building blocks are acted upon reasonably. In some
ways it seems natural to code ordering problems like the TSP in permutation
form. For example, in an eight-city problem where each city is visited in ascend-
ing order, the tour can be represented as follows:

123456728

The permutation representation of cities visited in reverse order would be rep-
resented as the following permutation:

BT654321

Although the permutation representation seems natural enough, how does it
fit into the representation schemes of early simple genetic algorithm application?

Inversion and Other Reordering Operators 17

In a previous discussion we took great pains to separate an allele’s locus from its
meaning. Mathematically we might say that a fitness f should only depend on
allele value ¢, f = f{v) only; however, in many problems it may be useful to allow
fitness to depend on string arrangement: fitness f can depend on some combi-
nation of allele value v and ordering o, f = fly, 0).

In the traveling salesman problem with permutation representation we have
gone to the other extreme. We have a problem where fitness depends only on
the ordering information, f = f{ o) only. We can imagine augmented TSPs where
the salesman must make decisions as he makes his rounds and those decisions
could easily be appended to the ordering information to create a mixed ordering-
value problem f = f(o, v):

12345678
0O00O0O0CO0CCOCO

In the example, the ascending, ordinal tour carries along allele information (a
zero) for each city. In this way we recognize that in general there is a spectrum
of possible coding methods that more or less depend on ordering and value.

Once we allow this possibility, we need to search for an operator analogous
to crossover, which permits the exchange of important ordering similarities be-
tween pairs of parents to form offspring. Recall that the power of genetic search
lies in the combined effect of selection and structured, randomized recombina-
tion: mutation is simply an insurance policy against the irreversible loss of genetic
material. Under an ordering representation, inversion, like mutation, is a unary
operator. If we are to create operators with the power of crossover, they must
(like crossover) be binary operators and they must combine ordering building
blocks from above-average parents in a sensible way. Goldberg and Lingle (1985)
have suggested such an operator in the partially matched crossover (PMX)
operator.

Under PMX, two strings (permutations and their associated alleles) are
aligned, and two crossing sites are picked uniformly at random along the strings.
These two points define a maitching section that is used to effect a cross through
position-by-position exchange operations.

To see this, consider two strings:

A
B

984|56 T|132 10
B71|2310|954 6

I

PMX proceeds by positionwise exchanges. First, mapping string B to string A, the
5 and the 2, the 3 and the 6, and the 10 and the 7 exchange places. Similarly
mapping string A to string B, the 5 and the 2, the 6 and the 3, and the 7 and the
10 exchange places. Following PMX we are left with two offspring, A" and B":

AM=9 84|23 10|1657
BP=8101|56 7|9243

where each string contains ordering information partially determined by each of
its parents.

172

Chapter 5 / Advanced Operators and Technigues in Genetic Search

Figure 5.16 displays a set of Pascal routines that implement PMX. These rou-
tines have been used to obtain the results on Karg and Thompson's (1964) 10-
and 33-city problems displayed in Figs. 5.17 and 5.18. Figure 5.17 displays best-
of-generation tour length versus generation number on two independent runs of

function find_city(city_name,n_city:city; var tour:tourarray):city;
var jl:integer;
begin

Jl:=0;

repeat

jlimjl+l;

until { (jl>n_city) or (tour[jl)=city_name));

find_city:=jl;
end;

procedure swap _city(city_posl,city_pos2:integer; var tour:tourarray);
var temp:city;
begin
temp:=tour[city_posl];
tour[eity_posl]:=tour[city_posZ];
tour[city_posZ]:=temp;
end;

procedure tour_norm(city_name,n_city:city; var tour:tourarray);
var temp_tour:tourarray;
j1,j2:city;
begin
jl &= find_city(city_name,n_city,tour);
if (j1 <> 1) then begin (* normalization *)
for j2 := 1 to n_city do begin
temp_tour([j2]):=tour[jl];
jli=jl+1; if (jl>n_city) then jli=l;
end;
tour:=temp_ tour;
end
end;

procedure cross_tour(n_city,lo_cross,hi_cross:city;
var tnurl_pld.tourz_uld,tourl_neu,tourz_neu:tourarrny];
var jl,hi_test:integer;
begin
if traceison then writeln('lo_cross,hi_cross=',6lo_cross,' ', hi_cross);
hi_test := hi_cross + 1; if (hi_test>n_city) then hi_test:=1;
tourl_new := tourl old;
tour2_new := tour2_old;
if rlo_cross <> hi_cross) and (lo_cross <> hi_test) } then begin
jl := lo_cross;
while (j1<>hi_test) do begin (* mapped crossover on both tours ¥)
swap_city(jl,find city(tourl old[jl],n_city,tour2_new),tour2 new);
swap_city(jl,find_city(tour2_old[jl1].n_city,tourl_new),tourl_new);
jl:=jl41l; if (jl>n_city) then jl:= 1;
end;
end;
end;

FIGURE 5.16 Partially matched crossover (PMX) operator in Pascal. Procedure
cross_tour implements PMX. Function find_city and procedure swap_city are
used by procedure cross_tour. From Goldberg and Lingle (1985).

Inversion and Other Reordering Operators 173

450.0
[
g RN 1{
g
= ; ——puN 2
; 400.0F
@
5
%
]

0 5 10 15 20

GENERATION

FIGURE 5.17 Partially matched crossover (PMX) operator in 10-city blind trav-
eling salesman problem. Run 1 converges to optimal results. Population size
n = 200 with p, = 0.6. From Goldberg and Lingle (1985).

33 City - 2000 Population
Bast-ol-Generation Cost vs. Generation

40

30

25 H_\

W e
20 - m INVERS [0
T ‘.‘» Pﬂw—wﬁwiﬂvw“&'

Cost
(Thousands)

15| InveRsion
1 ““'\\‘L.‘ PMX
oot s
10 = = . y
0 100 200 300 400 500
Ganeration

FIGURE 5.18 Partially matched crossover (PMX) operator in 33-city blind trav-
eling salesman problem.

174

Chapter 5 / Advanced Operators and Techniques in Genetic Search

a GA using roulette wheel selection and PMX. One of the runs has found the
optimal result and the other has come quite close. The 33-city results (Fig. 5.18)
compare the best-of-generation performance of runs with roulette wheel selec-
tion and PMX versus roulette wheel selection and inversion. The binary exchange
capability of PMX permits it to approach the optimal result quite closely, whereas
the inversion run gets stuck on a false plateau. While the results are encouraging,
in a world used to seeing 500- and 1000-city TSPs solved to optimality, such
approximate performance might be expected to elicit yawns until we remember
that the GA with PMX makes no use of city distance data. The restriction of pure
GAs to blind search is very severe, and we will consider methods that are per-
mitted to use nonpayoff information later in the chapter in the discussion of hy-
brid techniques and knowledge-augmented operators. For now, we recognize that
the use of nonpayoff information is always a mixed blessing, Using it may permit
more rapid improvement, but its use always restricts the applicability of the
search.

Operators similar to PMX have also been devised (Davis, 1985a,b; Davis and
Smith, 1985; Oliver, Smith, and Holland, 1987; Smith, 1985) and applied to prob-
lems with permutation representation. We examine the mechanics of two such
operators: order crossover (OX) and cycle crossover (CX).

The order crossover operator starts off in a manner similar to PMX, Starting
with the example strings A and B used to illustrate PMX, we select a matching
section (for comparison, we choose the matching section of the PMX example)

A
B

984|56 T|13210
B871|2310|954 6

Like PMX, each string maps to constituents of the matching section of its mate.
Instead of using point-by-point exchanges to effect the mapping as PMX does,
order crossover uses a sliding motion to fill the holes left by transferring the
mapped positions. For example when string B maps to string A, the cities 5, 6,
and 7 will leave holes (marked by an H) in the string:

B=8H1|2310|9H4H

These holes are filled with a sliding motion that starts following the second cross-
ing site:
B=2310HHH9481
The holes are then filled with the matching section city names taken from the
mate. Performing this operation and completing the complementary cross we
obtain the offspring A" and B’ as follows:
A!
Bl

56 7|2310|1984
2310|56 T7T|9481

Although PMX and OX are similar, they process different kinds of similarities.
PMX tends to respect absolute city position, whereas OX tends to respect relative
city position. We will have more to say about this in the next section. Before that
we examine the last of these permutation operators, cycle crossover.

Inversion and Other Reordering Operators 175

The cycle crossover operator is a cross of a different color. Cycle crossover
performs recombination under the constraint that each city name come from one
parent or the other, To see how this is done we start with example tours C and
D below:

C =982

D=123

1745106 3
4567 8910

Instead of choosing crossing sites, we start at the left and choose a city from the
first parent:

C' = Q- m == === ==

Since we want every city to be taken from one of the two parents, the choice of
city 9 from string C means that we must now get city 1 from string C because of
the 1 in position of string D.

B G e o s

This selection in turn requires that we select city 4 from string C. This process
continues until we are left with the following pattern:

Ul - STNG, G Q"

The selection of a 6 means that we should now choose a 9 from string C; however,
this is not possible; a 9 having been selected as the first city. That we eventually
return to the city of origin completes a cycle thus giving the operator its name,
Following the completion of the first cycle, the remaining cities are filled from
the other string. Completing the example and performing the complementary
cross yields the following children tours:

¢ 9231547 86 10
D’ 1824765109 3

Further theoretical and empirical results comparing PMX, OX, CX are presented
in Oliver, Smith, and Holland (1987).

Theory of Reordering Operators

Until recently there has been a paucity of theory related to reordering operators.
Frantz (1972) calculated several quantities of interest in his study of inversion.
He calculated the probability distribution of orderings of a given specificity and
defining length. He also determined the probability of movement of a gene lo-
cated at a particular locus. The probability that a randomly ordered permutation
with o alleles of interest has a defining length exactly equal to & is given by the
following expression:

(:—a+1)(g:§)

()

P{D = 8} =

176

Chapter 5 / Advanced Operators and Techniques in Genetic Search

He also calculated the corresponding cumulative distribution:

=y
)

Frantz calculated the probability of gene movement under inversion for a
gene at locus & on a string of length / as follows:

PD =< §) =

2[k(1 + 1) — & + 1))
I ’

P{gene moved} =

For long string lengths the expression reduces to
P{imoved} = 2(x — x%),

where x is the nondimensionalized locus x = &/l This asymptotic expression has
amaximum of P = 05 atx = 05.

This imbalance in movement probability caused Frantz to devise his lin-
ear + end inversion operator discussed earlier. There are other ways of reducing
these end effects. One way (with precedence in nature) is to treat the chromo-
some as a ring. With no beginning and no end, each locus is equally likely to be
moved under a single inversion. An analogous situation in Chapter 4 involved a
two-point, ring crossover operator. Another possibility is simply to leave the op-
erator alone and live with its locus dependency. It is possible that the end effect
might be useful in both natural and artificial genetic search by acting as a proba-
bilistic shield for useful groupings of genes. If this is the case, successful groupings
of genes could migrate toward the string ends, thereby using this inversion
shadow to retard further disruption. On the other hand unsettled groupings of
genes might seek out the string center, thereby guaranteeing themselves a high
probability of movement.

Frantz's concern with the locus-dependence of movement probability on the
one hand seems quite reasonable. Perhaps it is important to smooth out this prob-
ability, or perhaps, as we have just pointed out, the locus dependence is an ex-
ploitable side effect of the operator. If we are only concerned with finding tightly
linked building blocks, the absolute locus does not seem like the most relevant
variable of interest. Rather, maintenance or consistency in relative locus seems
like a more reasonable measure of operator disruptive potential. Holland (1975)
recognized this fact in his calculation of the probability of schema disruption due
to inversion:

Pldisruption} = 2p, f(f)l[l - I&(;H’);]

Inversion and Other Reordering Operators 177

The second-order term arises because the length of a schema is not increased
when both inversion points fall within a schema as illustrated below.

Disruptive Inversion
131261111 rFsrr26t 1)

.
*Almﬂﬁ(}l*ﬂil Iﬂi#nliﬂ*l

Nondisruptive Inversion
rr3tz261! 11

—

11 321
fiuhicﬁliﬁdl l-loni

6 | ! ||

l * ¥ ¥ 0w

The notation here is a little different from anything defined so far in this book.
The allelic “don’t care” symbols (*) retain their usual meaning; however, the ex-
clamation points (!) are used to indicate any of the possible orderings over the
remaining unmentioned genes. Holland did not use this notation or define an
ordering schema or template in his original work; however, he did allow for the
possible modification of an allelic schema’s defining length under inversion,

A start toward a more comprehensive allelic-ordering theory of schemata
began when 1 defined ordering schemata in connection with PMX (Goldberg
and Lingle, 1985). This study defined the space of all ordering similarities using
the ordering don't care symbol, the exclamation point (1), as illustrated above, In
the same way that *'s define all possible allele similarities (the allelic schemata
or a-schemata), the ordering schema (we call them o-schemata) define all pos-
sible similarities. For example, the o-schema

1123111111

defines the subset of all orderings that have gene 2 and 3 in positions 3 and 4
respectively. A particular o-schema of order (specificity) o describes that subset
of ({ — o) orderings over the I — o unspecified positions. For example, in the
o-schema above there are (10 — 2)' = 8! orderings of the symbols {1, 4, 5, 6, 7,
8, 9, 10} in the eight unspecified positions. Straightforward counting arguments
enable us to count the number of o-schemata. Since there are () ways to choose
o fixed positions among [slots and since there are (!,)o! ways to order { symbols
in ! — o slots, the total number of o-schemata, n,,, may be calculated as follows:

L n n
M= 2 R =)

Straightforward arguments show how a particular string is itself a representative
of 2’ schemata and that a population of n strings contains representatives of be-
tween 2’ and n-2' such o-schemata.

The previous definition of an g-schema is only one of a family of possible
~ definitions. If we want the relative position of an allele to matter instead of its
absolute position, we should define a relative o-schema (an o-schema, type r).

178

Chapter 5 / Advanced Operators and Techniques in Genetic Search

Using the notation r'() to generate absolute schemata of length /, the symbols
r'% 31! 2 8) would generate the following absolute o-schemata (o-schemata, type
ﬁ'}:

11

11

- -1 @
Cd o= = D) OO -
b DY QD = o=

3

3
|
|
1
[
I !

Pt
30
! 3
o
I
|

T N - P e—

! !
3 !

! 8!
! 2

In addition, if we treat the string as a circular structure with no beginning and
no end, the same type 5, o-schema picks up the following absolute o-schemata in
the bargain:

8 ! L
28 ! 311
12 ! 31
S | !

113
!
!
P13

O = = s

]
{
8
2 !
This idea of sliding the gene identifiers about leads us to consider a third type of
o-schema. So far we have considered o-schemata where the absolute position of
different genes has mattered (o-schemata, type a) and where the relative position
of different genes has mattered (o-schemata, type r). Now consider a certain set
of genes with a specified defining length and permit the entire packet to slide
about (in the sense of an o-schema, type r); as long as it has the specified defining
length, we may define a new type of o-schema that may be useful in character-
izing certain problems. Let us call this new entity a relative o-schema with sliding
(in shorthand, an o-schema type rs). To describe o-schemata type rs, we intro-
duce the functional notation rsi() to generate type r, o-schemata of defining
length & and total length { The argument of this function is an ordered list of
numbers used to generate a set of o-schemata type r. For example the o-schema
rs(2 3 8) expands to the following set of o-schemata type r:

r*(2 3! ! 8)
r*(2 ! 3 1 8)
r*(2 1 ! 3 8)

These type r, o-schemata may themselves be expanded to absolute o-schemata.

In some problems it may not even be necessary to maintain relative order
among the numbered objects. For these we define one last extension of the no-
tation which permits exchanges in order: a relative, sliding o-schema with ex-
change (type rse). Thus the notation rsey() expands an unordered list of
numbers into a set of o-schemata type rs. For example, the type rse o-schema
rse'/(2 3 8) expands to the set of 6 o-schemata type rs defined by the six per-
mutations of the numbers 2, 3, and 8. These may in turn be expanded to type r
and type a o-schemata.

The consideration of both o-schemata and a-schemata adds considerable per-
spective to the study of genetic algorithm performance under combined allelic

Other Micro-Operators 179

and reordering operations. This perspective is enhanced if we recognize that the
schema theorem operates on both o-schemata, a-schemata, and their combina-
tions. We must be careful to match the operator survival probabilities to the type
of schema we are discussing. For example, in Goldberg and Lingle (1985) the
survival probability is calculated for a pure o-schema, type a (absolute) under
the PMX operator. Holland's (1975) calculation of inversion “schema” disruption
probability is for an o-schema, type rse (relative with sliding and exchange). Ex-
tended schema analyses like those performed on the minimum deceptive prob-
lem (MDP) in Chapter 2 should help shed additional theoretical light on the
combined workings of o-schemata and a-schemata in particular problems.

OTHER MICRO-OPERATORS

A number of other low-level operators have been suggested for use in genetic
adaptive search. Although these add marginal power to genetic algorithms as
compared to the addition of abeyance (dominance) and reordering operators, we
briefly review some of the other operators suggested for use in GA search:
segregation, translocation, intrachromosomal duplication, deletion, sexual
differentiation.

Segregation, Translocation, and Multiple
Chromosome Structures

So far, we have examined genotypes with a single chromosome (haploid) or a
single chromosome pair (diploid). In nature many organisms carry genotypes
with multiple chromosomes. For example, the human carries 23 pairs of diploid
chromosomes. Adopting a similar structure in artificial genetic search requires
extending the representation once more and permiting a genotype to be a list of
k string pairs (assuming diploidy). But why should we want to make the repre-
sentation more complex in this way? Holland (1975) has suggested that multiple-
chromosome genotypes might be useful in extending the power of genetic
algorithms when used in conjunction with two operators: segregation and
translocation.

To see how segregation works, we simply imagine the process of gamete
formation when we have more than one chromosome pair in the genotype. Cross-
over occurs as before; however, when we go to form a gamete we randomly
select one of each of the haploid chromosomes. This random selection process,
known as segregation, effectively disrupts any linkage that might exist between
genes on different chromosomes. Of course, genes located on the same chromo-
some still are linked more or less tightly depending upon the distance separating
them. Segregation is a useful operator if relatively independent genes happen to
have located themselves on different chromosomes. In this way, with linkage ef-
fectively destroyed, poor alleles cannot piggyback their way to survival on the
strength of highly fit, unrelated alleles.

180

Chapter 5 / Advanced Operators and Technigues in Genetic Search

There is an article of faith in this last assertion. If segregation can exploit the
proper organization of the chromosome, how does the chromosome become or-
ganized in an appropriate manner? Holland has suggested that this is where the
translocation operator steps in. Translocation may be viewed as an interchro-
mosomal crossover operator. To implement such an operator in an artificial set-
ting, we need to tag alleles with their gene name so we can identify their intended
meaning when they are shuffled from chromosome to chromosome by the trans-
location operator. In nature, it is possible to produce genotypes without the full
gene complement following a translocation. This can and probably should be
avoided in artificial genetic search.

There has not been much experimentation with these operators in artificial
genetic search. Hollstien (1971) used a segregationlike operator in studying sin-
gle diploid chromosome genotypes. He assumed segregation to be a random shuf-
fle of alleles between parental strings during meiosis. The experiments he
performed were limited in scope and he drew no general conclusions about this
form of the operator. Later studies of genetic algorithms in machine learning
applications have required extended genotypes and operators (see Schaffer, 1984;
Smith, 1980) similar to segregation and translocation.

Duplication and Deletion

Duplication and deletion are a pair of low-level operators suggested for artificial
GA search. Intrachromosomal duplication acts by duplicating a particular gene
and placing it along with its progenitor on the chromosome, Deletion acts by
removing a duplicate gene from the chromosome. Holland (1975) has suggested
that these operators can be effective methods to adaptively control the mutation
rate. If the background mutation rate remains constant and duplication causes &
copies of a particular gene, the effective mutation probability (the probability
that at least one of the & copies undergoes a mutation) for this gene is multiplied
by £ Conversely, when a deletion occurs, the effective mutation rate is decreased.
Notice, of course, that once a mutation occurs in one of the new genes under
this scheme, we must decide which of the alternatives is expressed. We faced the
same situation when we talked about dominance and diploidy. In fact we may
view the multiple copies as inducing an infracbromosomal dominance as op-
posed to the more usual interchromosomal dominance that comes about in di-
ploidy. Holland has suggested the use of a dominancelike arbitration scheme to
make the necessary choice among competing alternatives, although there have
been no published studies of such mechanisms to date.

We might wonder if intrachromosomal duplication and deletion serve only
the function of inducing an adaptive mutation rate. Perhaps this is part of the
story; however, we have a!rcad}r seen one example where duplication was used
in a GA for a more fundamental purpose. Recall from Chapter 4 how Cavicchio
(1970) used intrachromosomal duplication to generate new image feature detec-
tors. Each of his genes specified a set of pixels as part of a single detector. In this
problem intrachromosomal duplication causes no arbitration problems, and sub-

Other Micro-Operators 181

sequent mutations or crosses involving the new detector may create a better,
more appropriate detector. In some respects genes in nature are like Cavicchio’s
“messy codings,” and perhaps there is some benefit in considering codings that
permit redundancy, variable lengths, and underspecification.

Sexual Determination and Differentiation

It is odd, at least curious, in a book where we model algorithms after natural
examples of reproduction and genetics that we have not yet discussed sex. It is
not for lack of interest, nor is it because sex is an unimportant mechanism with
negligible side effects. In this section we examine the mechanisms of sex deter-
mination and examine how these may be useful in genetic algorithm search.

Nature doesn't work as simply as we have assumed. In our simpleminded
mating schemes, we have permitted any individual to mate with any other, and
we have always divided the resulting genetic products in a manner that has en-
sured a viable genotype. In nature many organisms may be of two (or more)
distinct sexes, and in some way the two must come together to propagate the
species, The details of sex determination are handled differently in different spe-
cies; however, the human example is sufficiently representative for us to use as a
model.

One of the 23 pairs of human chromosomes determines sex. Females have
two homologous sex chromosomes (X chromosomes), and males have two dis-
similar sex chromosomes (one X chromosome and one Y chromosome). During
gametogenesis males form sperm, which carry either X or Y chromosomes (in
equal proportions); whereas females produce eggs, which carry only X chromo-
somes. When fertilization occurs, the certainty of X-chromosome production by
the female combined with the coin-toss uncertainty of X or Y-chromosome pro-
duction by the male leads to an expected (and observed) 1:1 sex ratio of males
and females.

Although the mechanics of sex determination in humans is straightforward,
nature tosses in interesting complications. A number of factors unrelated to gen-
der can piggyback on the sex chromosomes. These so-called sex-linked factors
are most frequently identified with the X chromosome. Additionally, although in
most organisms the loci found in the X chromosome are not found in the Y chro-
mosome, there are organisms where portions of the Y chromosome are homolo-
gous to a portion of the X chromosome. When this occurs, crossing over between
these homologous X and Y chromosomes can display incomplete sex linkage as
compared to organisms where the lack of homology inhibits crossing over.

All this is very interesting. Yet, we are not about to give up our pragmatic
viewpoint in exchange for a few arcane details of reproduction. More to the point,
what can sexual determination and differentiation do for us in artificial genetic
search? Unfortunately, there have been no published theoretical or empirical
studies of sex determination and differentiation in the literature of genetic algo-
rithms. Nonetheless, some straightforward reasoning can lead to a plausible ex-
planation of their utility. Clearly, the establishment of sex difference effectively

182

Chapter 5 / Advanced Operators and Techniques in Genetic Search

divides a species into two (or more) cooperative groups. This bifurcation allows
males and females to specialize somewhat, thereby covering the range of behav-
iors necessary for survival more broadly than would be possible with a single
competing population.

To show this quantitatively, we consider an idealized function demonstrating
the benefit of cooperation and specialization implied by natural sexual difference,
Suppose an individual has a choice between hunting for food or nurturing his or
her offspring. Letting b be the proportion of time spent hunting and n be the
proportion of time spent nurturing, we may postulate that the offspring survival
probability s is proportional to the product of the hunting and nurturing
proportions:

s(n, b) = nb.

An individual must make a choice berween allocating his or her time to the nur-
turing and hunting activities, and if we further assume that there is a loss of time
available for either activity proportional to the product of the activity proportions
(a jack-of-all-trades loss), we obtain an equation relating the time spent hunting
and nurturing as follows:

n+b+anb =1,

where a is the loss coefficient for not specializing Maximizing the survival s using
elementary methods, we obtain the optimum level of nurturing n* and hunting
b* for a single individual as follows:

-1+ V1 +a

¢}

n*=h*=

which approaches the limit n* = b* = 0.5 for the case where the loss coefficient
a = 0. In words, an individual can do no better than compromise between the
two necessary aclivities; excess time expended on either activity is penalized by
lower rates of survival for offspring. This is shown graphically in Fig. 5.19, which
depicts the variation of survival s as a function of nurturing »n for two cases g =
1.0 and a = 0.0.

Permitting two individuals to cooperate and act as a hunting-nurturing unit
produces a similar model of offspring survival. Assuming hunting and nurturing
proportions for individuals 1 and 2, b, n, b, and n, we obtain the survival
proportion s as follows:

s(ny, by, n, b)) = Ya(n,+m)b,+5b,),

where the factor of one-half permits direct comparison to the single individual
probability (there are now twice as many mouths to feed and nurture). The two
individuals’ time proportions are-governed by the following equations:

n, + b, + anh, = 1, i=1,2

Maximizing the survival s with respect to the hunting and nurturing proportions,

Other Micro-Operators 183

0.50

§ 5 0.254
a=0

a=1

0.00 ;
0.0 0.5 1.0

Nurturing - n

FIGURE 5.19 A single individual must compromise between nurturing and
hunting to maximize survival. The jack-of-all-trades loss (a > 0) further impairs
the individual’s ability to achieve high survival.

we obtain two cases. With no jack-of-all-trades loss, the survival probability is a
maximum along the line defined by the equation

as depicted in Fig 5.20a, a graph of survival versus the nurturing proportions.
Without jack-of-all-trades loss there is incentive to cooperate (survival has risen
from 0.25 (individual) to 0.5 (cooperative pair)), but there is no incentive for
specialization; either individual may nurture or hunt as long as total nurturing
and hunting sum to one.

With some jack-of-all-trades loss (@ > 0), the situation is quite different, as is
depicted in Fig. 5.20b. The optimal behavior now requires specialization. Maxi-
mal survival is obtained when (n,, n,) = (1, 0) or (0, 1). The survival at these
optima still shows the increment over the uncooperative individual and the jack-
of-all-trades loss is minimized.

Although the foregoing modes are idealized, they demonstrate the essential
cooperation and specialization served by sexual differentiation. Future trials of
sex in artificial genetic search are likely to show an advantage for sex operators
in problems that likewise require this combination of cooperation and special-
ization.

184 Chapter 5 / Advanced Operators and Techniques in Genetic Search

0.5

s(nyn,)

3
-

0.5+

s(ny, ny)

"

(L]
FIGURE 5.20 Cooperation between individuals enhances survival; however,
without jack-of-all-trades loss, there is no motivation for specialization as shown
in (a). With a jack-of-all-trades loss, maximum survival is achieved with maximal

specialization as shown in (b).

Niche and Speciation 185

NICHE AND SPECIATION

The specialization permitted by sexual differentiation is carried further in nature
through speciation and niche exploitation. Intuitively we may view a niche as an
organism’s job or role in an environment, and we can think of a species as a class
of organism with common characteristics. This separation of the environment and
the organisms exploiting that environment into different subsets is so0 common
in nature that we scarcely give it a second thought. In this light, it is curious that
we have not observed stable subpopulations of strings (species) serving different
subdomains of a function (niches) in most of our examples thus far. This section
shows how the inducement of niche and species can help GA search, presents
the relevant theory, and demonstrates how we might cause nichelike and spe-
cieslike behavior in genetic algorithms.

To understand why we might like to encourage the formation of niche and
species in GAs, let's consider the action of a simple genetic algorithm on the
simple function shown in Fig. 5.21a. If we start from an initial population chosen
uniformly at random, we obtain a relatively even spread of points across the func-
tion domain. As reproduction, crossover, and mutation proceed, the population
climbs the hills, ultimately distributing most of the strings near the top of one
hill among the five. This ultimate convergence on one peak or another without
differential advantage is caused by genetic drift—stochastic errors in sampling

LA

0.

f(x)

"

.0

X
(a) Equal peaks

FIGURE 5.21 Sample functions where stable, relatively noncompetitive sub-
populations might be useful. In (a) we would like subpopulations to be roughly
equal in size, In (b) we would like subpopulation sizes to decrease with decreas-
ing peak size (see p. 186).

186

Chapter 5 / Advanced Operators and Techniques in Genetic Search

1.5
1.0+
E 4
.DIS-‘ A
0.0 ‘ /\ .
0.0 0.5 1.0

(b) Unequal peaks
FIGURE 5.21 (Continued)

caused by small population sizes. Somehow we would like to reduce the effect of
these errors and enable stable subpopulations to form around each peak.

We also might like to modify the performance of simple genetic algorithms
in multimodal problems where the peaks are not all of the same magnitude, For
example, consider the function shown in Fig. 5.21b. In this problem there are
five peaks as in the previous example, but the peaks decrease in magnitude with
increasing x value. The performance of a simple genetic algorithm is easy enough
to predict. A simple GA, given enough generations, will distribute almost all of its
points about the highest peak. In many problems we would like to identify other
peaks in other regions of the space. Perhaps we would even like to allocate sub-
populations to peaks in proportion to their magnitude. We will soon see how the
inducement of niche and species can help us do exactly this.

Theory of Niche and Species

Although there is a well-developed biological literature in both niche and specia-
tion, its transfer to the artificial genetic search has been limited. Like many other
concepts and operators, the first theories directly applicable to artificial genetic
search are attributed to Holland (1975). To illustrate niche and species, Holland
introduced a modification of the two-armed bandit problem with distributed pay-
off and sharing. Let's examine his argument with a concrete formulation of the
same problem.

Niche and Speciation 187

SHALL PAYOFF

LEFT QUEUE RIGHT QUEUE
SHARES IN % SHARES IN

FIGURE 5.22 Schematic of a two-armed bandit with sharing among individuals
in two queues.

Imagine a two-armed bandit as depicted in Fig. 5.22. As in the rwo-armed
bandit problem discussed in Chapter 2, there are two arms, 2 left arm and a right
arm, and different payoffs associated with each arm, Suppose the expected payoff
associated with the right arm is $75 and the expected payoff associated with the left
arm is $25; as in the original problem, we are unaware initially which arm pays the
higher amount. Let’s further suppose that we have a population of 100 players and
that each player receives the full payoff amount from the arm he chooses on a partic-
ular play. If we leave matters alone at this point and allow the players to play either
arm, we connect directly with the original two-armed bandit problem discussed in
Chapter 2. If the players reproduce according to fitness (under reproduction), more
and more population members should line up behind the best (right) arm until the
population converges substantially to that arm.

So far we have no reason to expect any nichelike behavior: all trials eventu-
ally go to the observed best arm. It is at this point that we introduce the impor-
tant modification to the game that permits stable subpopulations to serve both
arms. Instead of allowing a full share of payoff for each individual, individuals who
choose a particular arm are now forced to share the wealth derived from a given
arm on a given play. At first glance this change appears to be quite minor. In fact
this single modification causes a strikingly and surprisingly different outcome in
the modified two-armed bandit.

188

Chapter 5 / Advanced Operators and Techniques in Genetic Search

To see why and how the results change, recall that despite the slightly differ-
ent rules of the game, population members are still allocated according to payoff.
In the modified game an individual receives a payoff that depends on the arm
payoff value and the number of individuals queued up at that arm. In the concrete
example, an individual lined up behind the right arm when all individuals are lined
up behind that same arm receives an amount $75/100 = $§0.75. On the other
hand an individual lined up behind the left arm when all individuals are queued
there receives §25/100 = $0.25. In both cases there is motivation for some in-
dividuals to shift lines. In the first case a single individual changing lines stands
to gain an amount $25.00 — $0.75 = $24.25. The motivation to shift lines is
even stronger in the second case. At some point in between, we should expect
there to be no further motivation to shift lines. This will occur when the individ-
ual payoffs are identical for both lines. If M is the population size and m,_, is the
number behind the left queue, £, is expected payoff from the right arm, and f, .,
is expected payoff from the left arm, the equilibrium point may be calculated as
follows:

Jogw _ _ Sogu _ Sien
Mg M — My My

In the example, this complete equalization of individual payoff occurs when 75
players select the right arm and 25 players select the left arm, because $75/75 =
$25/25 = $1.

Directly extending this problem to the k-armed case does not change the
fundamental conclusions. The incorporation of forced sharing causes the forma-
tion of stable subpopulations (species) behind different arms (niches) in the
problem. Furthermore, the number of individuals devoted to each niche is pro-
portional to the expected niche payoff. This is exactly the type of solution we
had hoped for when we considered the multimodal problems of Fig. 5.21. Of
course the extension of the sharing concept to real genetic algorithm search is
more difficult than the single idealized case implies. In a real genetic algorithm
there are many arms and deciding who should share and how much should be
shared becomes a nontrivial question. The next section presents the efforts to
induce niche formation through sharing or sharinglike mechanisms. Before ex-
amining what has been attempted, we must examine one further theoretical issue
in connection with speciation.

Once we recognize the importance of sharing to niche formation, we have
most of the necessary theory to understand its workings in artificial genetic
search; however, one other observation of nature may help us do a better job. In
our simple genetic algorithm work so far we have caused mating to occur at
random. This is contrary to most biological example. For instance, people do not
attempt to mate with cats, and frogs do not attempt to mate with scientists (al-
though the latter possibility might result in a researcher who jumps to conclu-
sions). The observation that species are unlikely to mate with organisms
dissimilar to themselves begs us to question why this might occur. Put another
way, what is the selective advantage of the rule that like mates like (positive

Niche and Speciation 189

B0O00 1"
Fit parenis cross

(il
bonit Yield wnfit offspring 1hane

0 31
X

FIGURE 5.23 simple bimodal function illustrating need for mating restriction.
Crosses between dissimilar near-optima almost always cause lethals.

assortive mating) that seems to govern the mating behavior of many species? A
simple example drawn from function optimization may again help illuminate the
key ideas. Suppose we have a function as shown in Fig. 5.23 with peaks at the
extremes of a one-dimensional space. Using a normal binary fraction to code
strings in this space, individuals located near the leftmost peak tend to have many
zeros in them, whereas individuals located at the rightmost peak tend to have
many ones in them (the lefimost optimum is the string 00000, whereas the
rightmost optimum is the string 11111). When a population of strings is
repeatedly reproduced, mated, and crossed, the resultant offspring tend to be
strings like 00111 or 11000 (a relatively useless—in this problem—blend of
1's and 0's). Interspecies mating in this manner tends to generate low-
performance offspring (lethals). If, on the other hand, some pressure can be main-
tained to cause similar individuals to mate with one another, the generation of
fruitless offspring can be reduced. This highlights the need for methods of en-
couraging more fruitful mating patterns.

Niche Methods for Genetic Search

A number of methods have been implemented to induce niche formation in ge-
netic algorithms. In some of these techniques the sharing comes about indirectly.
Although the shared two-armed bandit problem is a simple abstraction of niche

190

Chapter 5 / Advanced Operators and Techniques in Genetic Search

formation and maintenance, nature is not so direct in divvying up her bounty. In
natural settings sharing comes about through crowding and conflict. When a hab-
itat becomes fairly full of a certain organism, individuals are forced to share avail-
able resources.

Cavicchio’s (1970) dissertation was one of the first studies to attempt to
induce nichelike behavior in genetic algorithm search. He introduced a mecha-
nism he called preselection. In this scheme an offspring replaces the inferior par-
ent if the offspring’s fitness exceeds that of the inferior parent. In this way
diversity is maintained in the population because strings tended to replace strings
similar to themselves (one of their parents). Cavicchio claimed to maintain more
diverse populations ina number of simulations with relatively small population sizes
(n = 20)

De Jong (1975) generalized Cavicchio’s preselection technique in a scheme
he called crowding In De Jong crowding, an overlapping population is used
where individuals replace existing strings according to their similarity. An indi-
vidual is compared to a random subpopulation of crowding factor (CF) members.
The individual with the highest similarity (on the basis of bit-by-bit similarity
count) is replaced by the new string. Early in the simulation, this amounts to
random selection of replacements because all individuals are likely to be equally
dissimilar. As the simulation progresses and more and more individuals in the
population are similar to one another (one or more species has gotten a substan-
tial foothold in the population), the replacement of individuals by similar individ-
uals tends to maintain diversity within the population and reserve room for two
or more species. De Jong had success with the crowding scheme on multimodal
functions when he used crowding factors CF = 2 and CF = 3. De Jong-like
crowding has subsequently been used in a machine learning application { Gold-
berg, 1983).

Note that neither Cavicchio’s preselection scheme nor De Jong's crowding
scheme appears to use the sharing analogy discussed earlier; however, both
schemes induce a form of implicit sharing in the following sense. Without crowd-
ing or preselection, an individual in a2 nonoverlapping population is replaced by
uniform random selection. If the individual is replaced faster than this rate (as is
the case under crowding or preselection when a species gains a foothold), he
loses payoff (offspring) because he does not reach his full reproductive potential.
Put another way, even though crowding and preselection focus on the replace-
ment side of the equation, by forcing early retirement of too-numerous species
members they cause a lower offspring count, thereby making room for others.

The most direct exploration of biological niche theory in the context of ge-
netic algorithms occurred in Perry’s (1984) dissertation. In this work Perry de-
fines a genotype-to-phenotype mapping, a multiple-resource environment, and a
special entity called an external schema. External schemata are special similarity
templates defined by the simulation designer to characterize species member-
ship. Unfortunately the required intervention of an outside agent limits the prac-
tical use of this technique in artificial genetic search. Nonetheless the reader
interested in the connections between biological niche theory and GAs should
be interested in this work.

Niche and Speciation 191

Grosso (1985) also maintained a biological orientation in his study of explicit
subpopulation formation and migration operators. Since multiplicative, heterotic
(heterozygote better than homozygote) objective functions were used in this
study, the results are not directly applicable to most artificial genetic search; how-
ever, Grosso was able to show the advantage of intermediate migration rate values
over either isolated subpopulations (no migration) and panmictic (completely
mixed) subpopulations. This study suggests that the imposition of a geography
on genetic search may also be a useful way of assisting the formation of diverse
subpopulations. Further studies are needed to determine how to do this in typical
artificial search problems.

A practical scheme that directly uses the sharing metaphor to induce niche
and species is detailed by Goldberg and Richardson (1987). In this scheme, a
sharing function is defined to determine the neighborhood and degree of shar-
ing for each string in the population. To see how this works, consider the simple
one-dimensional test functions presented earlier in Fig. 5.21 and the simple shar-
ing function shown in Fig. 5.24. For a given individual the degree of sharing is
determined by summing the sharing function values contributed by all other
strings in the population. Strings close to an individual require a high degree of
sharing (close to one), and strings far from the individual require a very small
degree of sharing (close to zero). Since an individual is very close (as close as
possible) to itself, its sharing function value is one (as is any other string identical
to that individual). After accumulating the total number of shares in this manner,

Share
s{d)

0.0 r
“share

Distance
=% -5l

FIGURE 5.24 Triangular sharing function. After Goldberg and Richardson
(1987).

192

Chapter 5 / Advanced Operators and Techniques in Genetic Search

an individual’s derated fitness is calculated by taking the potential fitness (the
unshared value) and dividing through by the accumulated number of shares:

Sf(x;)

J(x) = -
s(d(x;, x;))

)=

=1

Thus, when many individuals are in the same neighborhood they contribute to
one another's share count, thereby derating one another's fitness values. As a
result this mechanism limits the uncontrolled growth of particular species within
a population.

To see this mechanism in action, we examine its performance on the one-
dimensional objective function shown in Fig. 5.21a. Using the triangular sharing
function of Fig. 5.24, an even distribution of points is found at each peak after
100 generations, as shown in Fig. 5.25a. This is the expected result as the peaks
in this test function are equally high. By contrast, a simple GA with no sharing
loses points due to genetic drift, as shown in Fig. 5.25b.

In another problem, stable subpopulations of appropriate size (proportional
to peax fitness) form at successively smaller peaks, as shown in Fig. 5.26a. By
contrast, with no sharing (Fig. 5.26b), a simple genetic algorithm quickly allo-
cates all trials to the highest peak.

The scheme as proposed is not entirely problem-independent. Richardson
and | suggested multidimensional extensions of the sharing function to permit its
use in multidimensional optimization problems (Goldberg and Richardson,
1987). We have also suggested a more interesting (and perhaps more general)
approach to sharing based upon comparisons at the genotypic (string) level in-
stead of the phenotypic (parameter set) level. In genotypic sharing, the argument
of the sharing function is defined to be the relative bit difference (the number of
different bits—the Hamming distance between the strings—divided by the string
length). A family of power law sharing functions appropriate to genotypic sharing
is shown in Fig. 5.27. Some preliminary experiments with genotypic sharing sup-
port its use; however, further study is required to test the breadth of applicability
of all sharing techniques.

Restriction of Mating in Genetic Search

We have seen how sharing encourages niche formation in artificial genetic search.
The continued creation of useful offspring requires restricted mating if lethals are
to be held to a minimum. Several schemes have been developed for this purpose.

Hollstien (1971) introduced schemes adopted from the traditional breeding
practices of animal husbandry and horticulture. Hollstien noticed that a line-
breeding technique (where the champion individual is repeatedly bred with oth-
ers) performed well on a unimodal function but performed poorly on a
multimodal function. To overcome this problem, he introduced a scheme he
called inbreeding with intermittent crossbreeding. Here he required close indi-
viduals to mate with one another as long as the family average fitness continued

Niche and Speciation 193

Sharing. No Mutation.
i Generation 100.
14

0.8 -

0.7

0.6

1(x)

0.5 4
0.4 -
0.3

0.2 +

0.1 -)
o T T T T T ¥ T L

o 0.2 0.4 0.8 0.8 1

(a) With sharing

No Sharing. No Mutation.

Generotion 100.

0.8 5

0.8

0.7 1

0.8 =

#(X)

0.5 1

0.4 4

0.3 -

o 0.2 0.4 0.6 0.8 1
X
(b) No sharing

FIGURE 5.25 sSimple genetic algorithm performance on equal peaks with (a)
and without (b) sharing. Population distribution at generation 100. From Gold-
berg and Richardson (1987).

194 Chapter 5 / Advanced Operators and Techniques in Genetic Search

Sharing. No Mutation.

Generotion 100,

1.1

0.8 4

0.8

0.7

0.6

0.4 -

0.3 -

0.2 +

M

(a) Wiﬂ: sharing

No Sharing, No Mutation.

Generation 100,

0.8

1(x)

AAAA

(b) No sliaﬁng

FIGURE 5.26 Simple genetic algorithm performance on decreasing peaks with
(a) and without (b) sharing. Population distribution at generation 100. From
Goldberg and Richardson (1987).

Niche Methods for Genetic Search 195

Share
sl &)

Relative Difference

a=dij / ggngme

FIGURE 5.27 Power law sharing functions where share is a function of relative
string difference (Goldberg and Richardson, 1987).

to rise. When this did not occur, crossbreeding between different families was
tried. This mating scheme showed marked improvement over his linebreeding
technique.

Booker (1982, 1985) also mentioned the need for restrictive mating to re-
duce the formation of lethals. In both of these studies he also discussed the need
for sharing to encourage niche and species formation, but since the sharing tech-
nique he suggested was restricted to a machine learning application (a classifier
system), we will postpone consideration of that part of his work until a later
chapter. Instead, let us consider his call for mating templates to adaptively re-
strict mating between dissimilar species.

Booker called for an explicit match between a mating template and the func-
tional portion (the decoded part) of a string. To illustrate this, let’s create some
augmented strings containing both templates and functional substrings:

<Template>:<Functional>
#10#:1010
#01#:1100
#00#:0000

In these strings the mating template (the substring to the left of the colon) is
constructed over a three-letter alphabet {0, 1, #}. In this alphabet, a 0 (in the
template) matches a O (in the functional substring), a 1 matches a 1, and a #
matches either a 0 or a 1. To determine whether strings are permitted to mate,

196

Chapter 5 / Advanced Operators and Techniques in Genetic Search

mating templates are matched against functional substrings. Different mating
rules may be implemented:

1. Bidirectional match is required.
2. Unidirectional match is required.
3. Best partial matches are accepted.

The functional string is decoded to determine parameter values and fitness func-
tion values in the normal manner.

Returning to the previous example, under the bidirectional mating rule, the
first two strings are viable mating candidates because each string's mating tem-
plate matches the functional substring of the other genotype (the # 10# matches
the 1100, and the #01# matches the 1010). The third string is not a viable
candidate for mating because its mating template is not matched by any func-
tional substring,

The mechanics of mating tag matching is straightforward, but why should we
want to introduce the added complexity of these operations? Primarily, we are
interested in having genotypes adapt their mating practices at the same time they
undergo selection for function performance. Placing a mating template directly
on the string causes the template itself to undergo selection and genetic opera-
tions (crossover, mutation, and others). Thus population members evolve a
preference for mates that help them produce better offspring. This kind of sec-
ond-order effect seems counterintuitive at first; however, we have already dis-
cussed similar second-order adaptation when we reviewed the possibility of
having the genome control genetic algorithm parameters such as crossover and
mutation probabilities (Bowen, 1986). In the present case, since mating tags do
not directly affect fitness themselves (they do not alter the problem parameters),
we are really discussing a rate effect: preference for good mates increases the
probability of subsequent improvement (decreases the probability of subsequent
destructive loss), and we expect an increase in the rate of improvement over a
genetic search without adaptive, restrictive mating.

A number of additions and modifications have already been suggested to im-
prove the basic mating template scheme. One objection to the Booker scheme is
the need to carry a mating template of the same length as the functional substring,
Since mating restriction is at best a second-order operator, it is doubtful that an
investment of more than twice the storage (not to mention the added computa-
tional expense of full-string matching) would be a worthwhile investment of
computer resources. To answer this objection, Holland (personal communica-
tion, 1985) has suggested a three-part string with a short mating template, a short
mating tag, and a full-length, functional substring. In this scheme the short mating
templates are matched to the short mating tags and the functional strings are left
out of the mating ritual. A sample pair of three-part chromosomes is shown
below: \

temp tag functional
#10#:1010:10010011101010
#O##-1100:11111000010010

Multiobjective Optimization 197

Note that the first string’s template matches the second string's tag and vice versa,

There are many variations on these mating restriction schemes. Whether a
double- or single-sided match is required is open to debate, and Booker (1982,
1985) has gone so far as to suggest various partial match scores when no com-
plete matches occur. While these schemes and their permutations seem plausible,
little simulation or theory has been presented to support these ideas. As a result,
mating tags and templates remain a fertile avenue for future research.

MULTIOBJECTIVE OPTIMIZATION

All of the optimization and search problems presented thus far reduce to a single
criterion. This criterion (represented by the objective function) has been trans-
formed to fitness function form, and we have thereafter proceeded with our re-
productive plans and genetic operators. This approach works well in many
problems, but there are times when several criteria are present simultaneously
and it is not possible (or wise) to combine these into a single number. When this
is the case, the problem is said to be a multiobfective or multicriteria optimi-
zation problem. These problems have long attracted the attention of researchers
using traditional techniques of optimization and search. More recently (Schaffer,
1984), genetic algorithms have been applied to the search for multicriteria
optima.

In single-criterion optimization, the notion of optimality scarcely needs any
explanation. We simply seek the best (highest or lowest) value of the assumedly
well-defined objective (utility or cost) function. In multiobjective (or vector-
valued) optimization the notion of optimality is not at all obvious. If we refuse
beforehand to interrelate the relative values of the different criteria—if we refuse
to compare apples to oranges—then we must come up with a different definition
of optimality, one that respects the integrity of each of our separate criteria. The
concept of Pareto opfimality helps us do this in a rational way. This notion is
best illustrated with a simple example.

Suppose a widget manufacturer wishes to minimize both on-the-job accidents
and widget cost. Both of these criteria are important to the successful operation
of the widget plant, and furthermore, it is hard to estimate the dollar cost of an
accident. Thus the case is a good candidate for multicriteria optimization, Sup-
pose further that we have five possible ways of running the plant (scenarios A, B,
C, D, and E), which result in the following widget cost and accident count values:

A = (2, 10) (widget cost, accident count)

B = (4, 06)
C = (8,4)
D =(9,5)
E=(78)

These data are plotted in Fig. 5.28, a graph of accident count versus widget cost.
The figure makes little sense at first glance: it is just a scatter plot of five points.

198

Chapter 5 / Advanced Operators and Techniques in Genetic Search

A=, 10

E-ir. &

B-s, 8)

Accidents

O D=9, 0
57 c-wo0 O

0
0 5 {

Cost

FIGURE 5.28 Illustration of multiobjective optimization. Five scenarios com-
pared on the basis of accidents and widget cost. The scenarios A, B, and C are said
to be nondominated.

Scanning the graph further reveals that the best points are lower on the page and
to the left. In particular, scenarios A, B, and C seem like good possible choices:
even though none of the three points is best along both dimensions, we can see
that there are trade-offs from one of these three scenarios to another; there is gain
along one dimension and loss along others. In optimization terminology we say
these three points are nondominated because there are no points better than
these on all criteria. On the other hand scenarios D and E seem to be poor
choices. This is the case because both scenarios are dominated by another point.
Scenario E (7,8) is dominated by B (4,6), because 4 < 7 and 6 < 8. And scenario
D (9,5) is dominated by C (8,4), because 8 < 9 and 5 < 9. Thus, in this problem
(and in other multicriteria problems) instead of obtaining a single answer, we
obtain a set of answers that are not dominated by any others, the Pareto optimal
(P-optimal) set. In the particular case the P-optimal set is {A, B, C}. As a practical
matter, the concept of Pareto optimality does not help us to select a single alter-
native from the P-optimal set. The decision maker must ultimately make a value
judgment among the alternatives to arrive at a particular decision.

To make the conditions of Pareto optimality mathematically more rigorous,
we state that a vector x is partially less than y, symbolically x <p y, when the
following conditions hold: :

(x <py) e (Y XUx, = y) N (IiNx; <).

Under these circumstances we say that point x dominates point y. If a point is

Multiobjective Optimization 199

not dominated by any other, we say that it is nondominated or noninferior. We
use these basic definitions to investigate genetic algorithm search applied to mul-
ticriteria problems.

The notion of genetic search in a multicriteria problem dates back to the
early days of GA experimentation. Rosenberg's (1967) study contained a sugges-
tion that would have led to multicriteria optimization if he had carried it out as
presented. He suggested using multiple properties (nearness to some specified
chemical composition) in his simulation of the genetics and chemistry of a pop-
ulation of single-celled organisms. His actual implementation contained only a
single property, and as a result it can only be considered a hint of things to come.

A practical scheme was developed 17 years later by Schaffer (1984) in his
Vector Evaluated Genetic Algorithm (VEGA) program. Schaffer extended Grefen-
stette's GENESIS program (1984ab) to include multicriteria functions, He cre-
ated equally sized subpopulations for selection along each of the criteria
components in the evaluation vector. In this scheme selection was performed
independently for each criterion; however, mating and crossover were performed
across subpopulation boundaries. Although this scheme was simple to imple-
ment, Schaffer was aware that the independent selection of champions in each
criterion held the potential for bias against middling individuals (points like point
B that are good but not excellent along any criterion). He developed several
heuristics, including a wealth redistribution scheme and a crossbreeding plan, to
try to overcome this difficulty, but he ended up settling for the bare independent
selection scheme in the remainder of his study.

Schaffer tried VEGA on seven functions. De Jong's function F1 was used to
validate the code. Two simple functions were drawn from the multiobjective op-
timization literature (Vincent and Grantham, 1981), and four functions were
system identification problems drawn from the control engineering literature
with control objects ranging from second- to seventh-order systems. To see
VEGA's typical performance, let’s look at Schaffer's second function, the function
F2,

This function is a two-valued function of a single parameter. We use the no-
tation F,, for the first value, F,, for the second value, and ¢ for the single, inde-
pendent parameter:

F () = r
F(t) = (t — 2)~

These may be mapped to a Pareto plane as shown in Fig. 5.29, where the Pareto
front of nondominated points is highlighted. All other points are dominated by
these and VEGA should be able to sort out the good points. Figure 5.30 shows
the results of a VEGA run at generation 0 and at generation 3. VEGA has identified
the front; however, there has been some tendency to ignore the middling points.

This problem of bias against middling points is a serious one. During a given
generation there should be no bias against any locally nondominated individuals,
If we accept the rationale of Pareto optimality, these individuals all should have

200

f (X}

0.00

Chapter 5 / Advanced Operators and Techniques in Genetic Search

ll‘a“'ed

Nondominated

-T——-'-'-

0 10 20

F21(t)

FIGURE 5.29 sketch of Schaffer’s second problem (F2) in the solution plane.
Pareto or nondominated front is marked.

—6.00

T
~4.00

2
LEGEND i LEGEND
of21 (X) of21(X)
o EX! 0122(X)
&X pointy =] 4 X points
+dominate flag 2 +dominate flag
=5
8
i
™~
g
24
£
-8
=3
]
=
8
-
8 t
L] L = LI L]
-2.00 0.00 2.00 4.00 6.00 —6.00 —4.00 —2.00 0.00 200 4,00 6.00
X

x
Generation 0 Generation 3
FIGURE 5.30 Vector Evaluated Genetic Algorithm (VEGA) computation results
on Schaffer’s second problem (F2). Comparison of generation 0 versus generation
3 (Schaffer, 1984). Reprinted by permission.

Knowledge-Based Techniques 201

the same reproductive potential. One way to achieve equal reproductive poten-
tial for all points at the same level is through a nondominated sorting procedure.
This procedure is similar to single-criterion ranking selection procedures (Baker,
1985); however, the population is ranked on the basis of nondomination. All non-
dominated individuals in the current population are identified and flagged. These
are placed at the top of the list and assigned a rank of 1. These points are then
removed from contention and the next set of nondominated individuals is iden-
tified and assigned rank 2. This process continues until the entire population is
ranked. Thereafter, reproduction count values or selection probabilities may be
assigned according to rank. To maintain appropriate diversity, this procedure
should be used in conjunction with the techniques of niche formation and spe-
ciation. Niche and speciation methods may be especially useful for stabilizing the
multiple subpopulations that arise along the Pareto-optimal front, thereby pre-
venting excessive competition among distant population members.

KNOWLEDGE-BASED TECHNIQUES

For the better part of five chapters this text has hammered away at the idea that
genetic algorithms work because of the combined effect of reproduction and
crossover. Recall the fuzzy reasoning of Chapter 1, where the exchange of fit
building blocks under reproduction and crossover was likened to human pro-
cesses of innovative thought. A parallel was drawn between the exchange of
building blocks (highly fit, short-defining-length schemata or similarity tem-
plates) to form new strings and the exchange of notions to form ideas. At the
time, the argument was appealing because, no doubt, we humans do combine
high-performance notions to speculate on new ideas. In another sense, however,
the view of random crossover as fbe means of human innovation seems much too
simplistic. When trying to think new thoughts, humans are certainly more delib-
erate about selecting the notions they cross to form their new ideas. People bring
to bear a healthy dose of knowledge, deciding which notions might plausibly go
together and evaluating (without direct experiment or sampling) whether the
resulting combination makes any sense in the current context. In other words
the operators of human innovative thought are (at least at times) directed by
knowledge. By contrast, in their purest form, genetic algorithms are blind search
procedures: they exploit only the coding and the objective function value to
determine plausible trials in the next generation. This is both a blessing and a
curse. On the one hand, their indifference toward problem-specific information
in large part gives genetic algorithms their broad competence (a procedure that
works well without knowledge peculiar to a specific problem has a better chance
of transferring to another domain). On the other hand, not using all the knowl-
edge available in a particular problem puts genetic algorithms at a competitive
disadvantage with methods that do make use of that information.

This section discusses several ways to combine problem-specific information
with genetic algorithms. We examine hybrid techniques, knowledge-directed op-
erators, and approximate function evaluation methods.

202

Chapter 5 / Advanced Operators and Techniques in Genetic Search

Hybrid Schemes

When problem-specific information exists, it may be advantageous to consider a
GA hybrid. Genetic algorithms may be crossed with various problem-specific
search techniques to form a hybrid that exploits the global perspective of the GA
and the convergence of the problem-specific technique. A number of authors
have suggested such hybridization (Bethke, 1981; Bosworth, Foo, and Zeigler,
1972; Goldberg, 1983); however, there has not been much published work de-
scribing the results of GA-hybrid study. Nonetheless, the idea is simple, has merit,
and may be used to improve ultimate genetic search performance.

Local optimization of a continuous function of one or more variables is a well-
developed art form, and numerous gradient and gradient-less techniques are avail-
able for finding local optima in these problems (Avriel, 1976). To develop a GA
hybrid for a calculus-friendly function, we simply cross our favorite local search
technique with a genetic algorithm. In a sense, the genetic algorithm finds the hills
and the hill-climber goes and climbs them.

Even without a calculus-friendly function, we can still use hybrid techniques.
Greedy algorithms (Lawler, 1976; Syslo, Deo, and Kowalik, 1983) in combinato-
rial optimization are a form of local search, and many popular problems have well-
developed heuristic search schemes. The problem-specific nature of local search
techniques requires that we develop a different hybrid technique for each differ-
ent problem or class of problems. We cannot get away from the question of effi-
ciency versus breadth. If we want to use problem-specific knowledge, we must
be willing to sacrifice some generality; however, the use of GA-hybrid techniques
allows us to do this in a fairly modular fashion.

There are a number of ways to hybridize GAs and still maintain a fairly mod-
ular program structure. A batch approach is illustrated in Fig. 5.31. In this way
we simply allow the genetic algorithm to run to substantial convergence and then
we permit the local optimization procedure to take over, perhaps searching
from the top 5% or 10% of points in the last generation. If this approach is
adopted, the niche and speciation techniques of the previous section may be
useful in maintaining diversity within the genetic algorithm population, there-
by allowing stable subpopulations to form at different peaks in the function
domain.

A parallel approach to hybrid implementation is depicted in Fig. 5.32. Here
we envision the availability of numerous parallel processors of sufficient process-
ing capability so function evaluations may be carried out simultaneously for dif-
ferent strings within a generation. In this way the parallel processors can be used
to evaluate string fitness values. They can also be used to perform occasional
iterations of the local search scheme to attempt to improve the current string.
(More will be said about parallel hardware and genetic algorithms in a later
section.)

A more canonical method of local search that can be hybridized with genetic
algorithms is G-bit improvement (gradientlike-bitwise improvement). In Gold-
berg (1983) I pointed out the similarity berween changing single bits and gra-
dient information. This similarity can be used in G-bit improvement to obtain a

Knowledge-Based Techniques 203

Genetic Algorithm
+ 3-Operators
+ Other Ops

Local Search
* Calculus

* Greedy

+ Othar

FIGURE 5.31 Schematic of genetic algorithm hybrid using a batch scheme. GA
sorts out peaks and local search climbs hills.

more general local search procedure that can be used regardless of coding or
problem structure. G-bit improvement includes the following steps:

1. Select one or more of the best strings from the current population.

2. Sweep bit by bit, performing successive one-bit changes to the subject string
or strings, retaining the better of the last two alternatives.

3. At the end of the sweep, insert the best structure (or k-best structures) into
the population and continue the normal genetic search.

It can be shown that G-bit improvement converges to the best solution of a de-
terministic, bitwise-linear function. The method is enhanced by keeping an ex-

GENETIC
ALGORITHM
MASTER
FUNCTION FUNCTION FUNCTION
EVALUATION EVALUATION EVALUATION
LDCAL LOCAL LOCAL
SEARCH SEARCH SEARCH

FIGURE 5.32 Genetic algorithm hybrid using a parallel implementation.

204

Chapter 5 / Advanced Operators and Techniques in Genetic Search

plicit record of successful bits and by using that record to determine whether
further experimentation is likely to be fruitful at a given position. The method
can also be extended to include all two- and three-bit experiments; however,
caution should be exercised as these extensions invite a combinatorial explosion
in problems with even modest string lengths.

Knowledge-Augmented Operators

Hybrid techniques are one way in which nonpayoff information can be used to
speed up genetic algorithm search. We can also use nonpayoff information to
guide genetic operators more directly toward better strings. In a sense, we can
augment random choice in operators like mutation and crossover by using knowl-
edge specific to a particular problem.

The earliest work in this area was performed using knowledge-augmented
mutation operators. Bosworth, Foo, and Zeigler (1972) encoded multidimen-
sional parameter optimization problems using real parameters. They performed
crossover (at parameter boundaries) and developed several mutation operators
incorporating nonpayoff information. They used Fletcher-Reeves (a conjugate
gradient method) and golden search together as a mutation operator. This ap-
proach is not unlike the hybrid schemes suggested in the previous section.

The use of knowledge-augmented operators has not been restricted to mu-
tation. Knowledge-augmented crossover has been tried in the traveling salesman
problem (TSP). Grefenstette, Gopal, Rosmaita, and Van Gucht (1985) developed
a greedy, heuristic crossover operator for the TSP. Let’s look at the representation
they selected and the operator they devised.

Before proceeding they examined a number of different representations for
the TSP, including an ordinal representation, a path representation, and an adja-
cency representation. In the ordinal representation, an ordered stack of remaining
city names is maintained, and the tour representation is simply the current ordi-
nal number (in that stack) of the city to be visited next. The good news concern-
ing an ordinal representation is that it preserves tours under crossover. The bad
news is that small changes in the coding can induce massive reordering of a tour.
As a result, ordinal representations have relatively meaningless building blocks
and do not make good candidates for GA search. Other representations such as
path representations (city-to-city) or adjacency representations (#th location
with value j implies city # goes to city j) maintain more meaningful building
blocks, but simple crossover operating on either of these representations creates
nontours. To see this, let's look at both path and adjacency representations.

For example, in a path representation, the tour (1 3 5 4 2) goes from city 1
to city 3 to city 5 to city 4 to city 2 and back to city 1 again. Crossover clearly
does not guarantee tours with this representation. If we perform simple crossover
on the two tours (54 3 1 2)and (1 2 3 4 5), a cross at crossover site 3 yields
the two offspring tours (54 34 5)and (1 23 1 2). In an adjacency representation,
we have the same problem. The adjacency representation (5 4 1 3 2) describes
a tour going from city 1 to 5, from 5 to 2, from 2 to 4, from 4 to 3, and from 3

Knowledge-Based Techniques 205

back to 1. A cross of the two adjacency tours (54 13 2)and (2 3 4 5 1) at site
3 yields the two nontours (54 15 1)and (2 3 4 3 2).

Recognizing this problem, Grefenstette et al. used an adjacency representa-
tion and a heuristic crossover (a greedy crossover) that constructs an offspring
by choosing the better of two parental edges (Grefenstette et al,, 1985, p. 164):

This operator constructs an offspring from two parent tours as follows:
Pick a random city as a starting point for the child's tour. Compare the
two edges leaving the starting city in the parents and choose the shorter
edge. Continue to extend the partial tour by choosing the shorter of the
two edges in the parents which extend the tour. If the shorter parental
edge would introduce a cycle into the partial tour then extend the tour
by a random edge. Continue until a complete tour is generated.

Using this operator with reproduction, good results were obtained on problems
of up to 200 cities with near optimal answers and computational effort on the
order of results obtained by simulated annealing procedures (Bonomi and Lutton,
1984; Kirkpatrick, Gelatt, and Vecchi, 1983). Figures 5.33 and 5.34 compare a
representative tour of the initial population to the best tour of a later generation
in a 200-city problem. This work is not directly comparable to the purer ap-
proaches discussed earlier in this chapter under reordering operators. The greedy

288 CITIES
DISTANCE = 1475.68
INITIAL POPULRTION

FIGURE 5.33 Representative initial tour in 200-city traveling salesman problem
(Grefenstette et al., 1985). Reprinted by permission.

206

Chapter 5 / Advanced Operators and Techniques in Genetic Search

288 CITIES
DISTRANCE = 2B3.46
GENERATION 433 24596 TRIALS

FIGURE 5.34 200-city traveling salesman problem, best tour of last generation
493 using greedy crossover operator (Grefenstette et al., 1985). Reprinted by
permission.

crossover depends heavily on knowledge of city distances. By contrast, the par-
tially matched crossover, order crossover, and cycle crossover operators do not
depend upon specialized nonpayoff information, and they should not be com-
pared to operators that exploit problem-specific information,

Approximate Function Evaluation Methods

In many problems we have specific knowledge that allows us to construct ap-
proximate models of our problem. In turn, this modeling capability allows us to
create more or less accurate approximations to our objective function. With ge-
netic algorithms, this knowledge can be put to good use by reducing the number
of full-cost function evaluations. In many optimization and search problems a
single function evaluation is a fairly costly process, involving many layers of sub-
routines, numerical or symbolic computation, and various coding and decoding
functions. As a result, if savings in computation time are possible through approx-
imate, perhaps erroneous, function evaluation, they may be worth pursuing so
more evaluations can be performed in the same time. This observation is relevant
to genetic algorithms, as we expect GAs to behave robustly under error and noise
because of their population sampling approach.

We have already examined one approximate function evaluation technique
in the image registration work performed by Grefenstette and Fitzpatrick (1985).

Knowledge-Based Techniques 207

Recall that the function evaluation in that problem was an accumulated pixel-by-
pixel difference taken between two images, one of an artery before dye injection
and one after dye injection. The GA searched for parameters of an affine transfor-
mation that minimized the pixel-by-pixel image difference. In the pilot study the
full function evaluation was fairly expensive as the image consisted of 100 x
100 = 10,000 pixels. After a number of experiments, Grefenstette and Fitzpatrick
found that a function evaluation based on a random sample of only 10 (of 10,000)
pixels vielded the best solution in a fixed number of pixel samples (200,000).
This idea can be applied directly to other sampled function evaluations. We can
also use the general idea of approximate function evaluation in problems with a
traditional mathematical structure.

In many optimization problems we have some fairly detailed knowledge of
the mathematical form of both a system model and the objective function. This
information is useful for creating approximate, relatively inexpensive models of
the system. Suppose we have the following idealized objective function:

max (s, d)

where s is an n-vector of state variables and 4 is an m-vector of decision variables,
Suppose further that we have a mathematical model of the system given by the
following vector equation:

g(s,d) =0, gan n-vector.

In solving these equations by traditional means, usually the model equations must
undergo processing where the state variable is guessed, the nonlinear model is
linearized, and new state variables are calculated. After a solution has been ob-
tained in this manner, it is a simple matter to obtain a linearized sensitivity anal-
ysis about the current solution:

e [2] e

Thus it becomes possible to update the state variables in a linear sense for sub-
sequent changes in the decision variables. This provides the opportunity to per-
form a linearized update of the function evaluation as given by the following
equation:

af of

as.&s + MM.

We may also use the exact objective function in conjunction with the approxi-
mate state variables. However we decide to approximate an offspring’s fitness, we
must recognize that an offspring has two parents and we should systematically
use both parents’ model information in the child’s approximate evaluation. There
is more than one way of doing this:

Af =

a) Use the closest parent.
b) Use the weighted average of parents.
c) Use the most recently evaluated parent.

Chapter 5 / Advanced Operators and Techniques in Genetic Search

Thereafter the parents may pass on Jacobian matrixes to their offspring to prop-
agate an approximate model as well as an approximate fitness value, If desired,
approximate techniques of Jacobian updating may be used to try to extend the
useful life of the linear model. Other possibilities exist for using population data
to obtain a better approximate model than that obtained from the parents alone,
These techniques have not been adopted in practice; however, they should pro-
vide a way of making genetic search more cost-competitive when linearized
model information is available as a result of the normal modeling process.

GENETIC ALGORITHMS AND PARALLEL PROCESSORS

In a world where serial algorithms are usually made parallel through countless
tricks and contortions, it is no small irony that genetic algorithms (highly parallel
algorithms) are made serial through equally unnatural tricks and turns. Thus it is
surprising that until recently very little work has been performed in mapping
genetic algorithms to existing and proposed parallel hardware. In this section, we
examine the implementation of genetic algorithms on parallel architectures.

Holland's earliest speculative work (1962¢) recognized the parallel nature of
the reproductive paradigm and the inherent efficiency of parallel processing. He
even went so far as to discuss the mapping of reproductive plans to a type of
cellular computer called an iterative circuit computer (1959, 1960).

Other early genetic algorithm researchers paid little attention to the com-
bined possibilities of genetic algorithms and parallel computer architectures.
Bethke (1976) calculated several complexity estimates for a particular mapping
of genetic algorithms to a parallel machine. He concluded that population average
fitness calculation was the primary serial bottleneck in genetic algorithm imple-
mentations of that time. He did not, however, simulate or implement a parallel
genetic algorithm.

Grefenstette (1981) examined several parallel implementations of genetic
algorithms. Specifically he outlined four prototypes:

a) Synchronous master-slave

b) Semisynchronous master-slave

c) Distributed, asynchronous concurrent
d) Network

The master-slave prototype already has been depicted in Fig. 5.32. In it we
take a single master process that coordinates k slave processes. The master pro-
cess controls selection, mating, and the performance of genetic operators. The
slaves simply perform function evaluations. The scheme is straightforward and
relatively easy to implement; however, it suffers from two major drawbacks. First,
a fair amount of time is wasted if there is much variance in the time of function
evaluation. Second, the algorithm is not very reliable, since it depends on the
health of the master process. If the master goes down, the system halts.

The first drawback is answered by Grefenstette’s second prototype, the semi-
synchronous master-siave. This prototype relaxes the requirement for synchron-

Genetic Algorithms and Parallel Processors 209

ous operation by inserting and selecting members on the fly as slaves complete
their work. This prototype operates much like De Jong's overlapping population
model with low generation gap & value (see Chapter 4). Like the first prototype,
the semisynchronous master-slave prototype is unreliable because of its depen-
dence on a single process.

In the asynchronous, concurrent genetic algorithm (depicted in Fig. 5.35),
k identical processors perform both genetic operations and function evaluations
independently of one another, accessing a common shared memory. The shared
memory requires that the processes avoid simultaneous hits on identical memory
locations; otherwise, there are no further timing requirements for this configu-
ration. This scheme is slightly less straightforward to implement than either of
the master-slave prototypes, but the reliability of the system is much improved.
As long as one of the concurrent processes and some of the shared memory
continue to function, some useful processing is performed.

The network prototype is depicted in Fig. 5.36. In this scheme, k indepen-
dent simple genetic algorithms run with independent memories, independent
genetic operations, and independent function evaluations. The k& processes work
normally, with the exception that the best individuals discovered in a generation
are broadcast to the other subpopulations over a communications network. With
the relatively intermittent need for communication, link bandwidth is reduced as
compared to the other schemes. Reliability of this scheme is high because of the
autonomy of the independent processes.

CONCURRENT CONCURRENT CONCURRENT
PROCESS PROCESS PROCESS
i
CONCURRENT SHARED CONCURRENT
PROCESS MEMORY PROCESS
CONCURRENT CONCURRENT CONCURRENT
PROCESS PROCESS PROCESS

FIGURE 5.35 Schematic of an asynchronous concurrent genetic algorithm.

210

Chapter 5 / Advanced Operators and Techniques in Genetic Search

GA GA

GA GA

FIGURE 5.36 sSchematic of a network genetic algorithm.

More recently, | have suggested an object-based design procedure for parallel
genetic algorithms. Here we consider two design models: a community model
and a plant pollination model. The community model is depicted in Fig. 5.37.
Here the genetic algorithm is mapped to a set of interconnected communities,
The communities consist of a set of homes connected to the centralized, inter-
connected towns. Parents give birth to offspring in their homes and perform func-
tion evaluations there. The children are sent on to a centralized singles bar (in
town) where they meet up with prospective mates. After mating, the couples go
to the town's real estate broker to find a home. Homes are auctioned off to com-
peting couples. If the town is currently crowded, the couples may also consult
the broker about homes in other communities, and if necessary they may go to
the bus station to move to another community.

The plant pollination model consists of a series of plant nodes connected by
a pollination network as shown in Fig. 5.38. Seeds grow up to become full plants
that generate pollen that is cast out on the pollination network. Associated with
each pollination network link is a probability of pollen transmission. This capa-
bility permits plant subpopulations to be more or less isolated from one another.
Plant pollen fertilizes mature plants, creating more seed. Selection occurs locally
by selecting the local best seeds to become mature plants in a probabilistic
fashion.

Although these object-based models are fun—almost frivolous—to imagine,
the intent is quite serious. By looking at each subprocess as an object or entity,
we more easily isolate the processing power, memory requirements, and com-
munications bandwidths required for each object. This perspective should allow
more efficient mapping of genetic algorithms to parallel computers.

Genetic Algorithms and Parallel Processors

e ™

s

- -
-" COMMUNITY "‘\\

| PARENTS
! OFFSPRING

/
{ SINGLES
: HOME
! WEDDING
‘\ i
\
\
\
\\
| |Hoee

FIGURE 5.37 Object-based design, a community model of a GA.

33 5

FIGURE 5.38 Object-based design, a plant pollination GA.

212

Chapter 5 / Advanced Operators and Techniques in Genetic Search

A number of parallel simulations and hardware implementations have re-
cently been reported (Jog and Van Gucht, 1987; Pettey, Leuze, and Grefenstette,
1987; Suh and Van Gucht, 1987b; Tanese, 1987). These should continue to flour-
ish as parallel hardware and development software become more readily
available.

SUMMARY

In this chapter we have examined some of the advanced operators and tech-
niques available for improving simple genetic algorithms. We have first examined
several micro-operators—genetic operators operating at a chromosomal level—
that are observed in nature. Dominance and diploidy, reordering operators, seg-
regation, translocation, duplication, and deletion have all been addressed.

Dominance and diploidy have been examined as a method of implementing
a long-term population memory. Both theory and simulation have shown that
dominance and diploidy are useful in nonstationary functions, especially cyclic
functions.

The implementation of chromosome reordering operators and their theory
have been examined. This extension requires that gene name information be car-
ried along with the allele. Unary operators such as inversion and binary operators
such as partially matched crossover, order crossover, and cycle crossover have
been examined. Additionally the theory of schemata has been extended to in-
clude these ordering schemata. This theoretical effort has led to a new taxonomy
of o-schemata (ordering schemata), including absolute, relative, sliding, and ex-
changing o-schemata.

Other low-level genetic operators such as segregation and translocation have
been discussed. These require the extension of the genotype to include multiple
chromosomes. Duplication and deletion also cause us to loosen our notions of
appropriate representation; they force us to consider variable-length representa-
tions. The role and process of sexual differentiation has been discussed. Sexual
differentiation allows intraspecies cooperation and specialization.

Interspecies differentiation through niche inducement and speciation have
been examined through macro-operators—operators acting at a population level.
The key theories, revolving around sharing and mating restriction, have led us to
consider a number of practical methods. On the niche side of the ledger, crowd-
ing techniques and sharing functions have been explored. Speciation through
both rigid and adaptive methods of mating restriction have also been examined.

The related topic of multiobjective optimization has also been discussed. The
concepts of Pareto optimality and nondomination have been briefly outlined.
Methods of selection that use multiple criteria have also been put forth. A method
that uses the criteria independently is found to ignore middling individuals. A
method that sorts the population on the basis of decreasing nondomination
should alleviate this difficulry, although the method has not been used in simu-
lations to date,

Problems 213

The use of knowledge-based techniques has been discussed along three lines:
hybrid schemes, knowledge-augmented operators, and approximate function
evaluation techniques. These methods are useful for exploiting the nonpayoff in-
formation that accompanies many search and optimization problems.

The implementation of genetic algorithms on parallel architectures has also
been discussed. It is ironic, considering the parallel nature of natural genetic sys-
tems, that GAs have not received greater attention in the parallel processing lit-
erature. Theoretical and implementation efforts are just now starting to receive
increased attention.

In many respects, we have only begun to scratch the surface of applied ge-
netic search. In practice, these advanced techniques and operators should lead
to further improvements in the efficiency and breadth of genetic algorithms,

H PROBLEMS

5.1. A haploid chromosome with a single gene has two alleles, 1 and 0. The
expected fitness of the 1 allele is f, = 1.5. The expected fitness of the 0 allele is
fo = 1.2, If there is no mutation loss associated with this process and the popu-
lation starts with an equal number of 1 alleles and 0 alleles, calculate the follow-
ing quantities:

a) the expected proportion of 1 alleles in generation 1.

b) the expected number of generations until the population has converged

to at least 99 percent 1's.

5.2. Repeat Problem 5.1 for a diploid population where allele 1 is assumed to
dominate allele 0 and the given fitness values are associated with the expressed
allele.

5.3. The expected loss rate for a particular allele is 50 percent. Calculate the
mutation rates required to maintain 1 percent of this allele in a haploid popula-
tion and a diploid population. Calculate the expected sampling frequency of the
recessive at this level.

5.4. A path representation of atouris(2 143 76 5 9 8 0). Perform inversion
on this string between inversion sites 3 and 5. Calculate a bound on the proba-
bility of survival of the schema [5 ! 8] under inversion when treated as an absolute
o-schema, a relative o-schema, a relative o-schema with sliding, and a relative,
sliding, and exchanging o-schema.

5.5. Calculate the total munber of o-schemata (absolute) for strings of length
{ = 10, 20, 50, and 100.

5.6. Expand the o-schema r'*(2 ! 1 8) to a set of absolute, o-schemata assuming
a circular structure.

5.7. Expand the type rs, o-schema rsi(2 1 3 4) to a set of type r o-schemata.

214

Chapter 5 / Advanced Operators and Techniques in Genetic Search

5.8. If intrachromosomal duplication causes six copies of a particular allele in a
given genotype, calculate the probability of no mutations, 1 mutation, 2 muta-
tions, 3 mutations, 4 mutations, 5 mutations, 6 mutations if the probability of
mutation is 0.05 per allele. Perform this computation exactly and with a Poisson
approximation.

5.9. A translocation operator works by slicing a chromosome uniformly at ran-
dom and moving the sliced section to another chromosome within the genotype.
Calculate a bound on the probability of separation of two alleles located five
positions apart on a string of length 25. The probability of translocation is 0.3,

5.10. Invent a sex gene coding that produces three sexes, male, female, and neu-
ter, in the proportions 2:1:5. Give natural examples of species with other than
binary sexual differentiation.

5.11. In a binary decision problem with expected payoff f, = 10 for decision one
and f, = 5 for decision zero, calculate the expected number of one decisions in
the next generation under the usual reproductive plan with and without sharing.
Assume the population currently contains 70 ones and 30 zeros. Assume perfect
sharing,

5.12. Some mating template schemes allow partial matching when no complete
matches are available. Invent a partial match score procedure that ranks a perfect
match higher than any partial match.

5.13. The Schaffer (1984) method of multiobjective selection is biased toward
single-criterion champions. In a minimization problem, is this difficulty more
troublesome in a problem with a concave or a convex Pareto optimal front? Write
a short paragraph with sketches explaining your answer.

5.14. Consider the maximization problem given by the objective function f(x,)
= x* + y’ and the model y = x* + 3x + 6. Construct a linear-linear approxi-
mation for this objective-model pair at the point (x,, y,). Consider two ways of
combining approximate model data to generate an approximate model for the
offspring without performing additional function evaluations.

B COMPUTER ASSIGNMENTS

A. Implement a simple genetic algorithm with diploidy, dominance, and the
triallelic dominance map.

B. Program and test the cycle crossover operator for a permutation string
representation.

C. Program and test an inversion operator that treats a permutation as a circular
string,

Computer Assignments 215

D. Devise a messy coding for the traveling salesman program that permits re-
dundant city names in a path representation. Devise and test a subroutine to
decode the messy coding,

E. Program and test the order crossover operator for a permutation coding,

F. Code asimple genetic algorithm with two niche schemes: De Jong crowding
and Goldberg-Richardson sharing. Compare and contrast these two methods on
the multimodal function of your choice.

G. Implement the mating template, mating tag scheme of Booker and Holland.
Implement bidirectional and unidirectional matches as switch selectable options.

H. Use a multiobjective genetic algorithm to optimize Schaffer’s second function
(Figs. 5.29 and 5.30). Use two methods of selection: Schaffer’s independent cri-
teria method and Goldberg's nondominated sort procedure. Compare and con-
trast the results,

1. Implement the method of G-bit improvement. Compare and contrast both
on-line and off-line performance with and without G-bit improvement using De
Jong's functions F1 and F5.

J. Use a simple GA to optimize the problem posed in Problem 5.14. Implement
a method of approximate function evaluation and solve the problem again. Com-
pare the results obtained using exact and approximate function evaluation.

Infroduction to Genetics-
Based Machine Learning

We started our genetic jaunt five chapters ago with the ultimate goal of under-
standing the robustness—the breadth and efficiency—of genetic algorithms in
autonomous learning and decision making. In one sense our study of genetic
algorithms in search and optimization has been a digression from this goal, be-
cause we know full well that optimization is too rigid a methodology to be trusted
with autonomy even in fairly simple environments. In another sense our inquiry
into the behavior of genetic algorithms in search and optimization domains has
been germane to our more ambitious goal for two reasons. First, playing in the
sandbox of search has allowed us to carefully control our environments and our
operators, thereby permitting more careful dissection of GAs and their workings.
Second, examining a variety of applications in search has given us the opportunity
to observe the genetic algorithm's innovative flair for searching rapidly through
arbitrary string spaces. In some ways GAs seem more humanlike a search mech-
anism than others we commonly encounter; they are speculative, seeking better
alternatives through the juxtaposition of hunches; they are inductive, breathing
fresh air into a world filled with ploddingly deductive procedures.

What then is the problem? Why can't we unleash this innovation in more
complex, less completely defined environments? The problem lies not with the
genetic algorithm but with the structures we choose to adapt. This chapter dem-
onstrates how to overcome this difficulty by changing the adapted structure, Ma-
chine learning systems that use genetic search as their primary discovery
heuristic are described. We briefly survey the origins of these genetics-based ma-
chine learning (GBML) systems, and we review the most common GBML archi-
tecture, the so-called classifier system. We examine the operation of classifier

218

Chapter 6 / Introduction to Genetics-Based Machine Learning

systems in some detail and we implement a simple classifier system in the Pascal
programming language. We then test the operation of the simple classifier system
in a straightforward problem domain: learning of a boolean function.

GENETICS-BASED MACHINE LEARNING: WHENCE IT CAME

The theoretical foundation for GBML systems was laid by Holland (1962c¢). His
outline for adaptive systems theory paid special attention to the role of program
replication as a method of emphasizing past programs. Although subsequent ap-
plications of genetic algorithms in the 1960s largely emphasized search and op-
timization, the theoretical underpinning was not so restricted.

With this theoretical foundation and the recognition of the fundamental role
of recombination (Holland, 1965), more concrete suggestions emerged for the
creation of a sequence of increasingly complex schemata processors (Holland,
1971). The conference where this paper was presented predated (1968) the first
application of a classifier system (Holland and Reitman, 1978) by a full decade,
and thus it comes as no surprise that modern classifier systems resemble sche-
mata processors in both outline and detail. In this initial proposal, Holland sug-
gested four prototype systems. Prototype | was to be a stimulus-response (SR)
processor that would link environmental schemata (what we shall soon call con-
ditions) with particular action effectors. Prototype II was designed to extend
type I by adding internal effectors (internal states), and prototype Il was to build
upon types I and II by including explicit environmental state prediction (a model
of the real world) and an internal evaluation mechanism. Prototype IV was to
extend the other prototypes by incorporating the capability to modify its own
effectors and detectors, thereby permitting greater (or perhaps lesser) range of
data detection and a larger behavioral repertoire. It is not surprising that the
development of this proposal coincided with the development of the theory of
schemata (Holland, 1968, 1971); however, no experiments or attempts at imple-
mentation have ever been reported on any of the prototypes.

These early suggestions led to the broad but as yet unimplemented broadcast
language (Holland, 1975). The broadcast language called for the creation of
broadcast units (production rules) over a 10-letter alphabet. This alphabet added
a number of wild card (both single and multiple match) characters to an under-
lying binary alphabet. Additionally, a fundamental punctuation mark, a persis-
tence symbol (causing continued broadcast of a message), and a quotation
character (causing the next symbol to be taken literally) would have provided
sufficient power for computational completeness and representational conve-
nience. The proposal for the broadcast language was instrumental in unifying the
earlier suggestions for schemata processors by theoretically permitting a consis-
tent representation of all operators, data, and rules or instructions; however, this
generality gained in theory has not been realized in practice.

The first practical implementation of a genetics-based machine learning sys-
tem was reported three years following the broadcast language proposal (Holland
and Reitman, 1978). This system, called Cognitive System Level One (CS-1), was

Genetics-Based Machine Learning: Whence It Came 219

trained to learn two maze-running tasks. It used a performance system with mes-
sage list and simple string rules called classifiers, a genetic algorithm comprised
of reproduction, crossover, mutation, and crowding, and an epochal learning
mechanism where reward was apportioned to all classifiers active between suc-
cessive payoff events. This last learning mechanism has largely been supplanted
by another mechanism, called a bucket brigade, in later systems.

Since the first classifier system, a number of researchers have extended and
applied these ideas in different ways. Table 6.1 presents a list of genetics-based

TABLE 6.1 Genetics-Based Machine Learning Applications

Year Investigators Description
BIOLOGY AND MEDICINE
1984 Rada, Rhine, and Smailwood Attempted GBML system for medical diagnosis
1987 Bickel and Bickel Development of GEML system for medical diagnosis
1987b Wilson Proposal for morphogenesis simulations using a classifier
system
BUSINESS
1986 Frey Architectural classification using CS
1986 Thompson and Thompson GA used to search for rule sets to predict company
profitability
1987 Greene and Smith GBML system learns rules describing consumer
preferences
COMPUTER SCIENCE
1980 Smith Draw poker bet decisions learned by pure genetic
learner (LS-1)
1981 Forsyth Beagle system developed for symbolic system evolution
1985 Cramer GA learns multiplication task using assembler-like
instruction set
1985b,c Forrest Interpreter constructed to convert KL-ONE nerworks to
classifier form
1986a Riolo General purpose C package available for classifier system
study
1986b Riolo Letter sequence prediction task via CS
1986 Zhou GA builds finite automata from examples
1987a,b Robertson Lisp version of Riolo’s problem implemented on
Connection Machine
in press Stackhouse and Zeigler GA searches for rule sets in symbolic rule-based system
ENGINEERING &
OPERATIONS RESEARCH
1983 Goldberg Inertial object and gas pipeline control tasks learned by
cs
1984 Schaffer LS-2 (LS-1 offspring, see Smith) learns parity and signal

problems

220 Chapter 6 / Introduction to Genetics-Based Machine Learning
TABLE 6.1 (Continued)
Year Investigators Description
ENGINEERING &
OPERATIONS RESEARCH
1985 Kuchinksi GA searches for battle management system rules
1986 Wilson Multiplexer task (boolean function) learned by CS
1987 Antonisse and Keller Development of GBML system for military applications
1987 Hilliard et al, Classifier system learns scheduling rules
HYBRID TECHNIQUES
1987 Oosthuizen A hybrid ML system integrates connectionism, graph
induction, and GAs
MACHINE LEARNING
1971 Holland Outline for four prototype schemata processors similar to
cs
1980a Holland Outline suggested for bucket brigade (BB) algorithm
1985 Zhou Qutline for addition of long-term memory to C§
1986 Holland, Holyoak, Nesbitt, and Publication of INDUCTION
Thagard
1987¢ Grefenstette Use of credit assignment and heuristic inversion in Pitt-
approach system
1987ab Riolo Analysis and simulation of bucket brigade performance
1987 Westerdale Analysis of altruism in bucket brigade credit assignment
1987¢c.d Wilson Proposal for explicity hierarchical credit assignment
PARALLEL
IMPLEMENTATIONS
1987a,b Robertson Implementation of classifier system on a Connection
Machine
SOCIAL SCIENCES
1978 Holland and Reitman First classifier system (C5-1) learns two maze-running
tasks
1982 Booker Animal-like automaton with CS brain learns to roam 2-D
environment
1983 Wilson Video eye learns to focus when driven by classifier
system
1985b Axelrod GA searches for rule sets of behavior in iterated
prisoner’s dilemma
1985b,c Wilson ANIMAT automaton with CS brain learns to roam 2-D
forests
19806ab Schrodt Prediction of intérnational events using CS
1986 Haslev (Skanland) Past tense, Norwegian verb forms learned by CS
1987 Fujiko and Dickinson GA learns LISP code to solve iterated prisoner’s dilemma

problem

What is a Classifier System? 221

machine learning applications. From artificial life applications to the conjugation
of Norwegian past tense verbs, GBML has received growing consideration across
a variety of fields. In the next chapter, we will review in more detail the research
results from CS-1 and other GBML applications of both historical and current
interest. In the remainder of this chapter, we examine the theory of operation,
implementation, and application of a simple classifier system.

WHAT IS A CLASSIFIER SYSTEM?

A classifier system is a machine learning system that learns syntactically simple
string rules (called classifiers) to guide its performance in an arbitrary environ-
ment. A classifier system consists of three main components:

1. Rule and message system
2. Apportionment of credit system
3. Genetic algorithm

The rule and message system of a classifier system is a special kind of pro-
duction system. A production system (Davis and King, 1976) is a computational
scheme that uses rules as its only algorithmic device. Although there is a wide
variation in syntax among production systems, the rules are generally of the fol-
lowing form:

if <condition>= then <action>=.

The meaning of a production rule is that the action may be taken (the rule is
“fired") when the condition is satisfied.

At first glance, the restriction to such a simple device for the representation
of knowledge might seem too constraining. Yet it has been shown that production
systems are computationally complete (Minsky, 1967; Post, 1943). Their power
in representing knowledge involves more than this. They are also computation-
ally convenient. A single rule or small set of rules can represent a complex set of
thoughts compactly. The explosion of rule-based expert system applications over
the past decade is strong empirical testimony to this claim.

Despite this growth in expert systems applications, traditional rule-based sys-
tems have been less frequently suggested in situations in need of learning. One
of the main obstacles to learning has been complex rule syntax. Many production
systems permit involved grammatical constructions for the condition and action
parts of a rule. Classifier systems depart from the mainstream by restricting a rule
to a fixed-length representation. This restriction has two benefits. First, all strings
under the permissible alphabet are syntactically meaningful. Second, a fixed
string representation permits string operators of the genetic kind. This leaves the
door propped open, ready for a genetic algorithm search of the space of permis-
sible rules.

Chapter 6 / Introduction to Genetics-Based Machine Learning

Classifier systems use parallel rule activation, whereas traditional expert sys-
tems use serial rule activation. During each matching cycle, a traditional expert
system activates a single rule, This rule-by-rule procedure is a bottleneck to in-
creased productivity, and much of the difference between competing expert sys-
tem architectures concerns the selection of “better” single-rule activation
strategies for this or that type of problem. Classifier systems overcome this bot-
tleneck by permitting parallel activation of rules during a given matching cycle.
By doing this, classifier systems permit multiple activities to be coordinated si-
multaneously. When choices must be made between mutually exclusive environ-
mental actions or when the size of the matched rule set must be pruned to
accommodate the fixed length message list, these choices are postponed to the
last possible moment, and the arbitration is then performed competitively, We
will have more to say about the form of this rule competition later; at this point,
we acknowledge the parallelism encouraged by the architecture of classifier sys-
tems and recognize that this parallelism may permit extremely fast hardware im-
plementations of classifier systems at the same time it promotes rational decision
making without arbitrary arbitration strategies.

In traditional expert systems, the value or rating of a rule relative to other
rules is fixed by the programmer in conjunction with the expert or group of
experts being emulated. In a rule learning system, we don't have this luxury. The
relative value of different rules is one of the key pieces of information that must
be learned. To facilitate this type of learning, classifier systems force classifiers to
coexist in an information-based service economy. A competition is held among
classifiers where the right to answer relevant messages goes to the highest bid-
ders, with the subsequent payment of bids serving as a source of income to pre-
viously successful message senders. In this way a chain of middlemen is formed
from manufacturer (the detectors) to consumer (environmental action and pay-
off). The competitive nature of the economy ensures that good rules (profitable)
survive and bad rules (unprofitable) die off.

We shall soon examine the many details of this apportionment of credit al-
gorithm, but for now one point is crucial: the introduction of an internal cur-
rency. The exchange and accumulation of an internal currency provides a natural
figure of merit for the application of genetic algorithms. Using a classifier’s bank
balance as a fitness function, classifiers may be reproduced, crossed, and mutated
as discussed in the first five chapters of this book. Thus, not only can the system
learn by ranking extant rules, it can also discover new, possibly better rules as
innovative combinations of its old rules. We must be a little less cavalier about
generating entirely new populations and we pay more attention to who gets re-
placed; however, the GA is very similar to those used in optimization and search
studies.

Together, apportionment of credit via competition and rule discovery using
genetic algorithms form a reasonable basis for constructing a machine learning
system atop the computationally convenient and complete framework of classi-
fiers. To understand the workings of a classifier system more clearly, we examine
each of its ceinponent parts in more detail.

Rule and Message System 223

RULE AND MESSAGE SYSTEM

A schematic depicting the rule and message system, the apportionment of credit
system, and the genetic algorithm is shown in Fig. 6.1. The rule and message
system forms the computational backbone of the silicon beast. Information flows
from the environment through the detectors—the classifier system's eyes and
ears—where it is decoded to one or more finite length messages. These environ-
mental messages are posted to a finite-length message list where the messages
may then activate string rules called classifiers. When activated, a classifier posts
a message to the message list. These messages may then invoke other classifiers
or they may cause an action to be taken through the system's action triggers
called effectors. In this way classifiers combine environmental cues and internal
thoughts to determine what the system should do and think next. In a sense it
coordinates the flow of information from where it is sensed (detectors) to where
it is processed (message list and classifier store) to where it is called to action
(effectors). To better understand the operation of the rule and message system,
look at its two informational units—messages and classifiers—and how they are
processed,

Environment

CLASSIFIER SYSTEM

T e e ey
DETECTORS MESSAGE LIST EFFECTORS

—® 101 @—> action
pavore . —>@ 000 O—or
—{ 111 (D——

INFORMATION
——

CLASSIFIER STORE

10#:111

oo#:000

- o oo -)
APPORTIONMENT OF CREDIT

GENETIC ALGORITHM

FIGURE 6.1 A learning classifier system interacts with its environment.

224

Chapter 6 / Introduction to Genetics-Based Machine Learning

A message within a classifier system is simply a finite-length string over some
finite alphabet. If we limit ourselves to a binary alphabet we obtain the following
definition:

<message> ::= {0, 1}.

Here the symbol “:: =" means “is defined as" and raising the set {0, 1} to the /th
power says that we take the product (concatenation) of [, 0's or 1's. Messages are
the basic token of information exchange in a classifier system. The messages on
the message list may match one or more classifiers or string rules. A classifier is
a production rule with excruciatingly simple syntax:

<classifier> ::= <condition>:<message>.

The condition is a simple pattern recognition device where a wild card character
(#) is added to the underlying alphabet:

<condition> ::= {0, 1, #}.

Thus, a condition is matched by a message if at every position a 0 in the condition
matches a 0 in the message, a 1 matches a 1, or a # matches either a 0 or a 1.
For example, the four-position condition #01# matches the message 0010, but
it does not match the message 0000.

Once a classifier's condition is matched, that classifier becomes a candidate
to post its message to the message list on the next time step. Whether the can-
didate classifier posts its message is determined by the outcome of an activation
auction, which in turn depends on the evaluation of a classifier's value or
weighting.

To solidify our understanding of the workings of the rule and message system,
we simulate the matching activity of a classifier system by hand. Suppose we have
a classifier store consisting of the classifiers shown in Table 6.2. At the first time
step, an environmental message 0111 appears on the message list. This message
matches classifier 1, which then posts its message, 0000. This message in turn
matches rules 2 and 4, which in turn post their messages (1100 and 0001). Mes-
sage 1100 then matches classifiers 3 and 4. Thereafter the message sent by clas-
sifier 3, 1000, matches classifier 4 and the process terminates,

The simple rule and message system is mechanically straightforward. Several
studies have extended the syntax of classifiers to permit multiple conditions
(Goldberg, 1983) and pass-through characters (Forrest, 1985b, ¢; Riolo, 19806a).
We shall examine some of these complications in the next chapter. Following the
old army acronym, we KISS (keep it simple, stupid) now and tell (about things
more difficult) later. Even the simple system permits interesting behaviors to be
learned; it also raises some important, basic questions. One comes to mind almost
immediately: when the message list is of insufficient size to carry all classifiers
from all matched messages, how do we determine which classifiers to activate?
The answer to this question is integrally bound to the apportionment of credit
subsystem.

Apportionment of Credit Algorithm: The Bucket Brigade 225

TABLE 6.2 Four Classifiers

Index Classifier
1) 0 1 ##:0000
2) 00#0:1100
3) 11##:1000
4) ##00:0001

APPORTIONMENT OF CREDIT ALGORITHM:
THE BUCKET BRIGADE

Many classifier systems attempt to rank or rate individual classifiers according to
a classifier’s role in achieving reward from the environment. Although there are
a number of ways of doing this, the most prevalent method incorporates what
Holland has called a bucket brigade algorithm. The bucket brigade may most
easily be viewed (with some reckless mixing of metaphors) as an information
economy where the right to trade information is bought and sold by classifiers.
Classifiers form a chain of middlemen from information manufacturer (the envi-
ronment) to information consumer (the effectors).

This service economy contains two main components: an auction and a
clearinghouse. When classifiers are matched they do not directly post their mes-
sages. Instead, having its condition matched qualifies a classifier to participate in
an activation auction. To participate in the auction, each classifier maintains a
record of its net worth, called its strength S. Each matched classifier makes a bid
B proportional to its strength. In this way rules that are highly fit (have accumu-
lated a large net worth) are given preference over other rules. Other bidding
structures have been suggested and we shall look at some of these; however, here
our overriding quest for simplicity governs our choice,

The auction permits appropriate classifiers to be selected to post their mes-
sages. Yet this is not the end of our bucket brigade story. Once a classifier is
selected for activation, it must clear its payment through the clearinghouse, pay-
ing its bid to other classifiers for matching messages rendered. A matched and
activated classifier sends its bid B to those classifiers responsible for sending the
messages that matched the bidding classifier’s condition. The bid payment is di-
vided in some manner among the matching classifiers. This division of payoff
among contributing classifiers helps ensure the formation of an appropriately
sized subpopulation of rules (Booker, 1982). Thus different types of rules can
cover different types of behavioral requirements without undue interspecies
competition. This reasoning follows the argument of Chapter 5 concerning the
role of sharing in forming different species in different niches. In a rule-learning
system of any consequence, we cannot search for one master rule. We must in-

226

Chapter & / Introduction to Genetics-Based Machine Learning

stead search for a coadapted set of rules that together cover a range of behavior
that provides ample payoff to the learning system.

To illustrate the workings of the bucket brigade, we consider the four clas-
sifiers of Table 6.2 once again, except this time we follow their payments as well,
Assuming initial strength values of 200 for all four classifiers, we post the initial
environmental message 0111 as before, as shown in Table 6.3. We assume a bid
coefficient of 0.1 and take the bid as the product of the bid coefficient €, and
strength. In the initial time step (¢ = 0), classifier 1 is matched, bids 20 units,
and sends its message during the next time step. Classifier 1 pays its bid to the
party responsible for its activation; in this case, the environment's strength is
increased by 20 units as the environmental message was responsible for activating
classifier 1. In subsequent time steps, activated classifiers make their payment to
previously active classifiers. Finally, at time step 5, a reward comes into the system
and is paid to the last active classifier, classifier 4.

To implement a well-defined procedure we must be a bit more rigorous in
detailing the auction and payment scheme. As already indicated, classifiers make
bids (A,) during the auction. Winning classifiers turn over their bids to the clear-
inghouse as payments (P,). A classifier may also have receipts R, from its previous
message-sending activity or from environmental reward. In addition to bids and
receipts, a classifier may be subject to one or more taxes T, Taken together, we
may write an equation governing the depletion or accretion of the ith classifier’s
strength as follows:

St + 1) = 5(8) = P(t) = T(t) + R(4).

To understand a classifier’s accumulation of wealth in detail, we must also quan-
tify its bids, payments, and taxes. A classifier bids in proportion to its strength:

B; = CyS;.

where C,, is the bid coefficient, § is strength, and 7 is classifier index.

We could simply stop here and choose auction winners deterministically by
selecting the & best classifiers (where & is the size of the message list); however,
this would unreasonably bias results toward the status quo (De Groot, 1970).
Instead we hold our auction in the presence of random noise. We calculate an
effective bid (EB) for each matched classifier as the sum of its deterministic bid
and a noise term:

EB, = B, + N(Ubi.])o

where the noise N is a function of the specified bidding noise standard deviation
(s

After the somewhat noisy auction and the selection of message-sending clas-
sifiers, payment must be made to those classifiers responsible for sending the
messages that activated the winners. The winners pay their bids (the B, values,
not the EB, values) to the clearinghouse, where payment is divided among all
classifiers responsible for sending a matching (and winning) message.

Apportionment of Credit Algorithm: The Bucket Brigade 227
TABLE 6.3 A Simple Classifier System by Hand—Matching and Payments
t=0 t=1 t=2
g i]
4 | E 2 £ -En 4 - a £
2 4 E % S 3 g % .- g 5 =
1) 0 1 ##:0000 200 20 180 0000 220
2) 00#0:1100 200 200 1 20 180 1100
3) 1 1##:1000 200 200 200 2 20
4) ##00:0001 200 200 1 20 180 0001 2 IR
Environment 0 0111 20 20
Final
t=3 t=4 t =15 Payoff
by
S 5 B . §
g : g i 2 - £ & % 5
& S, & = = & & = = @& b
1) 0 1 ##:0000 220 220 220
2) 00#0:1100 218 208 208
3) 1 1##:1000 180 1000 196 196
4) ##00:0001 162 0001 3 16 156 0001 206 50
Environment 20 20 20

Mote: 1, Cyyy, = 0.1
2 Chx = 0.0

Each classifier is taxed to prevent freeloading, thereby biasing the population
toward productive rules. Many schemes are available; we simply collect a tax
proportional to the classifier’s strength:

S

Together these relationships define the apportionment of credit algorithm
used in a number of classifier systems. To briefly examine the stability and effect
of this mechanism, we recast the apportionment of credit equation into a more
useful form where all payments and taxes have been replaced by their strength
equivalents. Assuming we have an active classifier, we obtain the following differ-
ence equation:

St + 1) = 8(1) — GuaS(#) — C.S(1) + R(2).

Chapter 6 / Intreduction to Genetics-Based Machine Learning

We have dropped the classifier index ¢ and all terms are as defined previously.
Grouping terms we obtain the following relationship:

S(t + 1) = (1 = K)S(1) + R(8),

where K = C,y + C,..

To see when this equation is stable, we may perform the usual Z-transform
(Takahashi, Rabins, and Auslander, 1970) on the homogeneous equation, More
intuitively, we recognize that the system can only be stable for bounded input
(bounded R) when the sequence of § values does not grow in magnitude of its
own accord. Forgetting about the input signal R(¢) for a moment, we obtain the
homogeneous equation as follows:

St + 1) = (1 = K)S(2).

Solving for the free fall strength at ¢+ = n, we obtain the relationship S(n) =
(1 — K)"S(0). This is stable (it doesn't blow up) for arbitrary S(0) when 0 = K
= 2; however, in practice we insist that K = 1 to enforce nonnegativity of the
strength. This analysis is only valid for classifiers that remain active; however, the
system remains stable even with the switching nonlinearity introduced by acti-
vating and deactivating real classifiers as long as the changing K meets the stability
criterion.

Stability is essential, but to see the effect of the mechanism, we are primarily
concerned with how the bucket brigade performs as time goes on. More directly,
what is the bucket brigade doing with the rewards it receives from the environ-
ment? Assuming some initial strength, 5(0), we calculate the strength on the 7n2th
time step by the following expression:

w—1
S(n) = (1 = Ky's(0) + X RGX1 — Ky~
=0
Once again we have ignored the switching nonlinearity, although this could have
been incorporated as a time-varying K{(7).

To investigate the effect of this mechanism further, we examine the steady-
state response. If the process continues indefinitely with a constant receipt R(r)
= R,, we obtain the steady-state strength by setting §(¢ + 1) = 8(¢) = §,,. This
computation results in the following equation:

S, = R,/K

Here the strength is simply the receipt amplified by the gain coefficient 1/K. The
steady bid may be derived as follows:
Crig

[
'R M R.

Bn= - —_—
K™ Gl

Since C,,, is usually small with respect to the bid coefficient, the steady bid value
usually approaches the steady receipt value, B, = E,.. In other words, for steady

Genetic Algorithm 229

receipts, the bid value approaches the receipt. For time-varying receipt values,
we see that the bid is a geometrically weighted average of the input, As such, it
acts as a filter of the possibly intermittent and noisy receipt values.

GENETIC ALGORITHM

The bucket brigade provides a clean procedure for evaluating rules and deciding
among competing alternatives. Yet we still must devise a way of injecting new,
possibly better rules into the system. This is precisely where the genetic algo-
rithm steps in. Using a GA similar to the simple genetic algorithm (SGA) of Chap-
ter 3, new rules are created by the now familiar tripartite process (reproduction,
crossover, and mutation). These rules are then placed in the population and pro-
cessed by the auction, payment, and reinforcement mechanism to properly eval-
uate their role in the system. We must be a little less cavalier about wanton
replacement of the entire population, and we must pay more attention to who
replaces whom. Nonetheless, GAs used in classifier systems strongly resemble
those used in search and optimization. In this section we concentrate on some
of the major differences found in GAs in classifier system use.

The simple GA of Chapter 3 contained a nonoverlapping population model
where we completely selected and replaced a new population at each generation.
This is not generally desirable in machine learning applications. In machine learn-
ing we are often concerned with maintaining a high level of on-line performance
as we learn to perform more proficiently, whereas in search and optimization, we
are usually more concerned with convergence or off-line performance. In our
discussion of De Jong's (1975) experiments we encountered a GA parameter
called the generation gap G, which was used to implement and test overlapping
population genetic algorithms. In our work here, we define a quantity called the
selection proportion, proportion, where we replace that proportion of the pop-
ulation at a given genetic algorithm invocation. We also define a quantity called
the GA period, T, that specifies the number of time steps (rule and message
cycles) berween GA calls. This period may be treated deterministically (the GA
is called every T, cycles) or stochastically (the GA is called probabilistically with
average period T_,). Additionally, the invocation of genetic algorithm learning
may be conditioned on particular events such as lack of a match or poor
performance.

The selection process is often performed using roulette wheel selection
where each classifier’s strength value § is used as its fitness. Because we no longer
generate entire populations, we sometimes are careful when choosing population
members for replacement. De Jong's (1975) crowding procedure as described in
Chapter 4 may be used to encourage replacement of similar population members.

Mutation must be modified because classifier systems use a ternary alphabet.
We simply define the probability of mutation p,, as before; however, when a mu-
tation is called for, we change the mutated character to one of the other two with
equal probability (0 — {1, #}, 1 — {0, #}, # — {0, 1}).

230 Chapter 6 / Introduction to Genetics-Based Machine Learning

With these changes to the normal routine, genetic algorithms may be
dropped into the classifier system and used in a manner not too different from
our previous search and optimization applications.

A SIMPLE CLASSIFIER SYSTEM IN PASCAL

Classifier systems are remarkably straightforward. However, as is the case with
new genetic algorithm users, novice classifier system devotees are sometimes
perplexed how to start skinning this breed of cat. In this section, we put some
flesh on the classifier system bones as we develop a simple classifier system (5SCS)
in the Pascal programming language. Specifically, we construct a system designed
to learn a boolean function, a multiplexer. We are careful to strip the system to
its bare essentials. We collapse the finite-length message list to a single message
(the environmental message) and because we get immediate feedback, we sim-
plify the payoff mechanism considerably. These simplifications allow us to create
a functional system with a minimum of machinery.

Simple Classifier System Data Structure

As already indicated, the rule and message system—sometimes called the perfor-
mance system—is the computational backbone of a classifier system. We examine
the data structures and procedures used to implement a simple performance sys-
tem within the simple classifier system. We concentrate on important code seg-
ments and skip some of the lesser details; however, the complete SCS code is
presented in Appendix D with sample data files. Figure 6.2 shows the data dec-
larations required to implement a population of classifiers and its environmental
message in the simple classifier system. The classifier type classtype is defined as
a record containing a condition ¢, an action 4, and a number of scalar variables.
The condition type is defined as an array of type frif—a ternary digit, an integer
berween — 1 and 1—where a — 1 is interpreted as the wildcard character and
both 0 and 1 are interpreted as is. In the SCS the action type is taken as type bit
In the multiplexer problem, the classifier system is learning a boolean function
and must output a 1 or a 0. The classifier type also contains a number of variables
of type real: strength, bid, and ebid. The variables strength and bid are self-ex-
planatory, and ebid is the classifier's effective bid (what we called EB earlier).
Recall that the effective bid is usually the classifier’s bid with the addition of some
zero-mean noise. The classifier type contains one additional scalar variable, the
boolean variable matchflag The value of matchflag is set to true when the clas-
sifier’s condition is matched by the current environmental message.

We define a data type classarray as an array of classifiers (an array of class-
type) and we place this array of classifiers in a population record type, poptype
We create an array of classifiers (type classarray) called classifier We include
integer variables nclassifier and nposition, the number of classifiers and number
of positions in the condition respectively. We also include a number of real type

A Simple Classifier System in Pascal 23

| declare.scs: declarations for scs)

const maxposition = 50;

maxclass = 100;
wildcard - -1;
type bit = 0..1; { a binary digic)
eric = -1..1; (a ternary digit; 0=0; 1=1; -l=#)
action = bit; [a binaray decision)
condition = array[l..maxposition] of trit;
message = array[l..maxposition) of bic;
classtype = record
c:condition;
a:action;

strength, bid, ebid:real;
matchflag:boolean;
specificity:integer;
end;
classarray = array[l..maxclass] of classtype;
classlist = record
clist:array[l..maxclass] of integer;
nactive:integer
end;

poptype = record
classifier:classarray;

nclassifier, nposition:integer;

pgeneral, cbid, bidsigma, bidtax, lifetax,

bidl, bid2, ebidl, ebid2,

sumstrength, maxstrength, avgstrength, minstrength:real
end;

var population:poptype,; { population of classifiers)
matchlist:classlist; { who matched)
EnVmesSAge .message; [environmental message)
rep:text; | report device/file)

FIGURE 6.2 The primary data declarations in the simple classifier system (5CS)
describe the population of classifiers.

population parameters in the population type poptype; however, we will describe
these as we use them.

With the population type defined, we create a single instance called (cleverly
enough) population. We also create a single environmental message called
envmessage. The message type message is taken as an array of type bit where the
type bit is simply taken as the subrange of integers between 0 and 1. In more
advanced classifier systems we might create an array of such messages (the mes-
sage list). Here we simply create a single instance called envmessage to represent
our environmental message.

In addition to the population of classifiers and the single environmental mes-
sage, we also create an auxiliary data structure to record which classifiers are
currently matched by the environmental message. This structure is of type cleass-
list (a record containing an array of integers, the clist, and the number of active

232

Chapter 6 / Introduction to Genetics-Based Machine Learning

elements, the integer variable nactive) and is called the matchlist. When the
performance system is executed, matchlist is constructed to contain a list of
classifier index values and the number of classifiers that match the current mes-
sage. This same information is available (with some digging) in the classifier
matchflag values; however, it is useful to keep a separate record for efficient
implementation of the auction.

Last but not least, we declare the reporting file (or device) used for all initial
and ongoing output reports other than interactive screen output. We call this file
(or device) rep and declare it as type fext. The SCS uses a total of seven files:

rep Output file/device for non-screen reports

cfile Input file/device for classifier data

efile Input file/device for environmental and detector data
rfile Input file/device for reinforcement data

tfile Input file/device for timekeeping darta

gfile Input file/device for genetic algorithm data

pfile Output file/device for plot data

Detailed file formats are presented in Appendix D. More important, we examine
the data structures constructed from each of these files in more detail as we pick
apart the structure of the SCS,

The Performance System: Matchmaker, Matchmaker,
Make Me a Match

As the performance system is the heart of the 5CS, the matching procedures are
the heart of the performance system. Figure 6.3 presents the code for the two
routines responsible for matching classifiers to the environmental message:
maltch and matchclassifiers The function match performs a match between a
single condition and a single message and returns a boolean true value if the
match succeeds. The match is performed position by position, returning true if a
wildcard is present (# = —1) or if a 0 matches a 0 or a 1 matches a 1. The
match process is coordinated by the while-do construct. Developing more effi-
cient matching procedures may be a worthwhile activity, as much of the classifier
system's time is spent in the mafch code. Word-oriented assembler code can be
written to do bit-level comparisons; however, these procedures are machine-spe-
cific and beyond the scope of our treatment.

The procedure matchclassifiers matches all classifiers against the environ-
mental message and constructs the matchlist data structure. The core of this
calculation is contained in the for-do construct where, first, the matchflag boo-
lean variable (contained in each classifier’s record) is set by an invocation of the
match function. The variable containing the number of active classifiers variables,
nactive, is then incremented and the clist (list of classifiers) contained in the
matchlist structure is assigned the index value of the matched classifier. At the
termination of matchclassifiers, matched classifiers have their match flags set and
the structure mafchlist contains the number of matched classifiers and a c/ist of

A Simple Classifier System in Pascal 233

funetion match(var c:condition; var m:message; nposition:integer):boolean;
[match a single condition to a single message)
var matchtemp:boolean;
begin
matchtemp := true;
while (matchtemp = true) and (nposition > 0) do begin
matchtemp := (c[nposition] = wildcard) or (c[nposition] = m[nposition]);
nposition := nmposition - 1
end;
match := matchtemp
end;

procedure matchclassifiers(var population:poptype; var emess:message;
var matchlist:classlist);
{ match all classifiers against environmental message and create match list)
var j:integer;
begin with population do with matchlist do begin
nactive := 0;
for § := 1 to nclassifier do with classifier[]] do begin
matchflag := match(c, emess, nposition);
if matchflag then begin
nactive := nactive + 1;
clist[nactive] := j
end
end;
end end;

FIGURE 6.3 The function match and the procedure matchclassifiers are at the
heart of the rule and message system in the simple classifier system (SCS).

their index values. With the matching thus completed, we are ready to choose
winners and distribute payment among the classifiers in the apportionment of
credit algorithm.

Apportionment of Credit Algorithm

Previously, we listed two main components of the apportionment of credit (AQC)
algorithm of a classifier system: an auction and a clearinghouse. These compo-
nents are represented in the functional code of the SCS apportionment of credit
subsystem shown in Fig. 6.4. Here we see the procedure aoc calling three rou-
tines: auction, clearinghouse, and faxcollector. We also see the declaration of a
data structure of type crecord (clearinghouse record) instantiated in clearingrec
The clearinghouse record contains two integer entries, winner (the new winner)
and oldwinner (last iteration’s winner). The clearinghouse record also contains
a single boolean flag bucketbrigadeflag This input variable is set to true by the
user during classifier system initialization if implicit bucket brigade operation is
desired. For the multiplexer problem, bucketbrigadefiag is usually set to false
because reward is available at every time step and because there is no relationship
berween successive signals (they are chosen randomly). In other problems where
a chain of reward is necessary to apportion credit to precursor activities, buck-
etbrigadefiag should be set to true, thus activating payment from new winner to
old. Whether using the implicit bucket brigade or not, more complex classifier

234

Chapter & / Introduction to Genetics-Based Machine Learning

| aoc data declarations - aoc uses cfile for input)
type ecrecord = record
winner, oldwinner:integer;
bucketbrigadeflag:boolean;
end;

var clearingrec:crecord;

procedure acc(var population:poptype; var matchlist:classlisc;
var clearingrec:crecord);
| apportionment of credit coordinator)

begin
with clearingrec do winner := auction(population, matchlist, oldwinner);

taxcollector(population);
clearinghouse(population, clearingrec);
end;

FIGURE 6.4 The procedure aoc and its data structure clearingrec coordinate
the apportionment of credit subsystem within the simple classifier system (SCS),

systems would, of course, require more detailed recordkeeping of all winners and
their callers; such nastiness is one reason we are working on a simple classifier
system.

We delve more deeply into the workings of the apportionment of credit sub-
system in Fig. 6.5. The function auction holds a noisy auction to select a winning
classifier from the set of matched classifiers. Within the for-do construct, auction
cycles through the matched classifiers (using the matchlist structure), succes-
sively calculating each classifier’s base bid (bid) and its effective bid (ebid). The
bid is taken as the product of chid, a linear function of a classifier’s specificity,
and a classifier’s strength. The function of specificity adopted here is of the form

bidl + bid2*specificity

where bidl and bid2 are input parameters. Different bidding structures may be
investigated by selecting different bid! and bid2 values. The effective bid (ebid)
is also taken as a product of cbid, a linear function of specificity, and strength.
Normally distributed, zero-mean noise with a specified noise deviation bidsigma
is added to this product. Separate coefficients are used for the effective bid spec-
ificity function (ebid] and ebid2), thereby providing additional flexibility for in-
vestigating alternative bidding structures. The normally distributed noise is
generated using the Box-Muller method (Pike, 1980) through routines contained
in the SCS utility code (file utility.scs) as shown in Appendix D. The function
duction keeps track of the classifier index with highest effective bid and returns
this value upon relinquishing control to procedure aoc

Thereafter, procedure clearinghouse is invoked to reconcile payments. The
current winner's strength is simply decreased by the amount of its bid value (not
its effective bid value), and if the bucketbrigadeflag is true, the old winner's
strength value is increased by the amount of this payment. This clearinghouse
procedure is much simplified over that of more general classifier systems. In ad-

A Simple Classifier System in Pascal 235

function auction({var population:poptype; var matchlist:classlist;
oldwinner:integer):integer;
{ auction among currently matched classifiers - return winner)
var §, k, winner:integer; bidmaximum:real;
begin with population do with matchlist do begin
bidmaximum := 0.0;
winner := oldwinner; (1f no match, oldwinner wins again)
if nactive > 0 then for | := 1 to nactive do begin k := clist[]];
with classifier[k] do begin
bid := cbid * (bidl + bid2 * specificity) * strength;
ebld := cbid * (ebidl + ebid2 * specificity) * strength
+ noise(0.0, bidsigma);
if (ebid > bidmaximum) then begin
winner := k;
bidmaximum := ebid
end
end end;
auction := winner
end end;

procedure clearinghouse(var population:poptype; var clearingrec:crecord);
{ distribute payment from recent winner te oldwinner }
var payment:real;
begin with population do with clearingrec do begin
with classifier|winner] do begin { payment)
payment := bid;
strength := strength - payment
end;
if bucketbrigadeflag then | pay oldwinner receipt if bb is on)
with classifier[oldwinner] do strength := strength + payment

end end;

procedure taxcollector(var population:poptype);
| eollect existence and bidding taxes from population members)
var j:integer; bidtaxswitch:real;
begin with population do begin
| life tax from everyone & bidtax from actives)
if (lifetax < 0.0) or (bidrax < 0.0) then for j := 1 to nclassifier do
with classifier[j] do begin
if matchflag then bidtaxswitch := 1.0 else bidtaxswitch := 0.0;
strength := strength - liferax*strength - bidtax*bidtaxswitch*strength;
end;
end end;

FIGURE 6.5 The function auction and the procedures clearinghouse and tax-
collector do the actual work of the apportionment of credit subsystem in the
simple classifier system (SCS).

dition, we notice one other difference between this implementation and our
more general description earlier in the chapter. In describing the more general
apportionment of credit mechanism, we said that matched classifiers made their
payments to the previously active classifiers that sent the messages which
matched the currently active classifiers. In the simplified scheme the currently
active classifier makes payment to the previously active classifier (when bucket-
brigadeflag = true) even though there is no direct link through a message list.

236

Chapter 6 / Introduction to Genetics-Based Machine Learning

In this way we assume linkage between time-adjacent classifiers, an assumption
warranted by the temporal order imposed by the environment. This form of im-
Pplied or implicit bucket brigade was first developed by Wilson (1985b). It can
work well in simple classifier systems when there is only a single train of thought
required for effective operation. In more complex systems, the more general
bucket brigade with multiple classifier-message chains provides a more effective
means of distributing payoff to classifiers responsible for particular rewards.

The last routine called by the aoc procedure is taxcollector. To discourage
nonproductive classifiers, two different types of tax are collected from classifiers:
an existence tax and a bid tax. The existence tax is assessed and collected from
all classifiers at a tax rate specified in the real-valued population variable lifetax.
The bid tax is assessed and collected from all classifiers that bid in the last auc-
tion; this tax rate is specified by the real-valued variable bidtax. If either of these
tax rates is nonzero, the for-do construct within procedure taxcollector contains
the necessary machinery to collect the appropriate amount of tax from each
classifier.

Together, auction, clearinghouse, and taxcollector distribute and collect
payments and taxes to help assure that good rules receive high strength and bad
rules receive relatively low strength. Thereafter strength may be used as a fitness
measure to facilitate a genetic search for new, possibly better rules.

Genetic Search within the Simple Classifier System

The genetic algorithm used for rule discovery in the SCS is remarkably similar to
the SGA code of Chapter 3. Thus we only dwell on the important differences.
Figure 6.6 displays the data structure and the GA coordinating procedure (ga)
used in the SCS genetic algorithm. The genetic algorithm data structure garec is
a record of type grecord. A grecord contains several variables of type real: pro-
portionselect, pmutation, and pcrossover. The variable proportionselect is the
proportion of the overlapping population that gets reproduced during a given
genetic algorithm invocation. The variables pmutation and pcrossover are the
probabilities of mutation (per trit or bit transfer) and crossover (per mating
event) respectively. A grecord also contains several integer variables. The para-
meter crowdingfactor specifies the number of candidate individuals to be chosen
for replacement using crowding. The integer variables nmutation and ncrossover
are counters used to accumulate the total numbers of mutations and crosses re-
spectively. A grecord also contains a structure mating of type marray. This mat-
ing array contains records of mating and replacement. Each such mating record
contains the two mate indexes (matel and mate2), the crossover site for the
conjugal couple (sitecross), and the indexes of the two classifiers replaced
(mortl and mort2) by the two new children. The mating record is only used in
the GA report.

Staring at the GA coordinating procedure ga (Fig. 6.6), we see code that is
very close to that used in the simple genetic algorithm (SGA): population statis-
tics are calculated in the procedure statistics; a pair of mates (matel and mate2)

A Simple Classifier System in Pascal 237

| ga.scs: genetic algorithm code for SCS)

| data declarations |
const maxmating = 10;

type mrecord - record

matel, mate2, mortl, mort2, sitecross:integer
end;

marray = array[l..maxmating] of mrecord;
grecord = record

proportionselect, pmutation, pcrossover:real;
ncrossover, nmutation, crowdingfactor, crowdingsubpop,
nselect: integer;
mating:marray; | mating recerds for ga report]

end;

var garec:grecord;
gfile:crext;

procedure ga(var garec:grecord; var population:poptype);

| coordinate selection, mating, crossover, mutation, & replacement |
var j:integer; childl, child2:classtype;

begin with garec do with population do begin

statistics(population); | get average, max, min, sumstrength }
for § := 1 to nselect do with mating[j] do begin
matel :=- select(population); | plck mates)

mate? := select{population);
crossover(classifier[matel], classifier[mate2], childl, child2,

pcrossover, pmutation, sitecross, nposition,
ncrossover, nmutation); | cross & mutate)

mortl := crowding(childl, population, crowdingfactor, crowdingsubpop);
sumstrength := sumstrength - classifier[mortl].strength

+ childl.strength; { update sumstrength)

classifier[mortl] := childl; [insert child in mortl's place)
mort2 := crowding(child2, population, crowdingfactor, crowdingsubpop);
sumstrength := sumstrength - classifier|mort2].strength

+ child2.strength; { update sumstrength }

classifier[mort2] := child2;

end;
end end;

FIGURE 6.6 The genetic algorithm within the simple classifier system (SCS) is
very similar to the simple genetic algorithm (SGA) code of Chapter 3 as evidenced
by the procedure ga and its data structure garec.

is picked using roulette wheel selection in the function select; crossover is per-
formed in the procedure of the same name. The similarity, however, stops here,
Since we are now searching, not for the best single rule, but for a well-adapted
set of rules, we use crowding replacement to choose the classifiers that die to
make room for new offspring. Recall from Chapter 4 that in the simplest form of
crowding, crowdingfactor individuals are chosen for possible replacement by a
given offspring. We extend the crowding procedure somewhat by requiring the
replacement candidates to be chosen from a low-performance subpopulation.

238

Chapter 6 / Introduction to Genetics-Based Machine Learning

Each time we choose an individual for possible replacement on the basis of sim-
ilarity, we first choose crowdingsubpop individuals at random from the full pop-
ulation, retaining the individual with lowest strength. Thereafter crowding
continues as described in Chapter 4. In this way modified crowding replaces low-
performance individuals who are similar to the children being inserted into the
population.

Crowding is implemented within the 5CS in the functions worstofn, match-
count, and crowding as shown in Fig. 6.7. The function worstofn picks a subpop-
ulation of size n (in our case, size crowdingsubpop) at random from the full
population, returning the index value of the worst strength individual among
those selected. The function matchcount takes two classifiers and counts the
number of positions of similarity between them. Each identical condition position
increments the count by one. The count is also incremented by one when clas-
sifiers have identical actions. The function crowding uses worstofn and maich-
count to place an offspring classifier (child) in a population slot occupied by a
closely related, low-performing classifier. The for-do construct is executed a total
of crowdingfactor times. Within the loop a classifier is chosen from the classifier
population using worstofn and the number of matches match is calculated using
the function matchcount If this number is larger than the currently largest match
(matchmax), then the new match becomes the new currently largest match. The
function crowding then returns the index value of the classifier with highest
match count.

The function crowding is used to complete the procedure ga (Fig 6.0). Two
individuals are thus selected for their untimely demise (the integer variables
mortl and mori2). In addition, as the offspring are placed into the population,
the variable sumstrength is updated to reflect the new population total strength,

So What's the Problem?

Thus far we have treated our simple classifier system as though it had not a care
in the world. So far it does not. We have not presented it with a problem (an
environment) or a way to interact with that problem. We remedy this situation
presently by creating a straightforward task: learning a boolean function, a six-
line multiplexer.

The multiplexer function to be learned is depicted schematically in Fig. 6.8.
This problem has been considered previously using a connectionist approach
(Barto, Anandan, and Anderson, 1985) and a classifier system (Wilson, 1987a).
Six signal lines come into the multiplexer. The signals on the first two lines (the
address or A-lines) are decoded as an unsigned binary integer. This address value
is then used to indicate which of the four remaining signals (on the data or D-
lines) is to be passed through to the multiplexer output. For example, in the
figure the address signal 11 decodes to 3, and the signal on data line 3 (signal =
1) is passed through to the output (output = 1).

Although the multiplexer’s operation can be explained in a straightforward
manner, we still need to know what task is to be accomplished by the simple
classifier system. In the SCS program, the classifier system is presented with a

A Simple Classifier System in Pascal 239

function worstofn(var population:poptype; n:integer):integer;
[select worst individual from random subpopulation of size n)
var j, worst, candidate:integer; worststrength:real;
begin with population do begin
{ initialize with random selection)
worst := rnd(l, nclassifier);
worststrength := classifier|worst].strength;
| select and compare from remaining subpopulation)
if (n > 1) then for j§ := 2 to n do begin
candidate := rnd(l, nclassifier);
if worststrength > classifier[candidate].strength then begin
worst := candidate;
worststrength := classifier|worst].strength;
end;
end;
{ return worst }
worstofn := worst;
end end;

function matchcount(var classifierl, classifier2:classtype;
nposition:integer):integer;
[count number of positions of similaricy)
var tempcount, j:integer,
begin
if (classifierl.a = classifier2.a) then tempcount := 1
else tempcount ;= 0;
for | := 1 to mposition do
if (classifierl.c[j] = classifier2.c[]]) then tempcount := tempcount + 1;
matchcount := tempcount;
end;

function crowding(var child:classtype; var population:poptype;
crowdingfactor, crowdingsubpop:integer):integer;
{ replacement using modified De Jong crowding)
var popmember, j, match, matchmax, mostsimilar:integer;
begin with population do begin
matchmax = -1; mostsimilar := 0;
if (crowdingfactor < 1) then crowdingfactor := 1;
for J := 1 to crowdingfactor do begin
popmember := worstofm(population, crowdingsubpop); (pick worst of n)
match := matchcount(child, classifier|[popmember], nposition);
if match > matchmax then begin
matchmax := match;
mostsimilar := popmember;
end;
end;
crowding := mostsimilar;
end end;

FIGURE 6.7 Crowding is used to help maintain a diverse population of rules.
The function crowding invokes the matchcount and worstofn functions.

randomly generated sequence of example signals. The classifier system then
learns to emulate the 6-multiplexer. To do this, the system repeatedly responds
to different signals, receiving or not receiving reward as it gives or does not give
the correct answer. In this manner the apportionment of credit algorithm rewards
existing rules depending on their effectiveness. Thereafter the genetic algorithm
injects new rules to improve system performance.

240

Chapter 6 / Introduction to Genetics-Bosed Machine Learning

ADDRESS
{ ———— a0
| —— Al
DATA
d Do MULTIPLEXER |
1] i}
0 D2
1 D3

FIGURE 6.8 The simple classifier system is presented with the task of learning
a six-bit multiplexer function.

The multiplexer environment is coded in Pascal as shown in Fig. 6.9. The
environmental record environrec of type erecord consists of integer variables
laddress (length of the address), ldata (length of the data), Isignal (length of the
signal), address (decoded address), output (correct multiplexer output), and
classifieroutput (classifier output). In addition, an erecord contains a copy of the
randomly generated signal called signal

The multiplexer environment requires two major activities: the generation
of the random signal and the calculation of the correct output (required for later
reinforcement). As we see in Fig. 6.9, procedure environment coordinates these
two activities with calls to the procedures generatesignal and multiplexeroud-
put The procedure generatesignal uses the random number utility function fTip
(Appendix B) to create a new signal. The procedure multiplexeroutput decodes
the address of the correct data line using a function called decode (similar to the
decode function of Chapter 3) and inserts the correct signal into the environ-
mental record variable owutput This result is used later in the reinforcement rou-
tine to decide whether reward should be paid to a particular classifier.

Get the Message, Take Some Action

We have developed the guts of our simple classifier system. We have constructed
the essential code to implement our environment. Now, how do we get them to
talk to one another? Referring back to the classifier system schematic in Figure
6.1, recall that a classifier system gets information from its environment through
its detectors and causes change in the environment through its effectors. We now
implement detectors and effectors for the SCS.

In Fig. 6.10 we see data declarations and essential code for the detector sub-
system of the SCS. For this problem the detectors are straightforward. In the pro-

A Simple Classifier System in Pascal 291

| environment declarations)
type erecord=record
laddress, ldata, lsignal, address, output,
classifieroutput:integer;
signal :message;
end;

var environrec:erecord;
efile:text;

procedure generatesignal(var environrec:erecord);
| generate random signal)
var j:integer;
begin with environrec do
for § := 1 to lsignal do
if flip(0.5) then signal[j] := 1
else signal[f] := 0
end;

function decode(var mess:message, start, length:integer):integer;
| decode substring as unsigned binary integer |
var j, accum, powerof:integer;
begin
accum = 0; powerof? :=1;
for j := start to start+length-1l do begin
accum := accum + poweroflimess[]];
powerof? := powerof? * 2;
end;
decode := accum
end;

procedure multiplexeroutput(var environrec:erecord);
| calculate correct multiplexer output)
var j:integer;
begin with environrec do begin
| decode the address)
address := decode(signal,l,laddress);
| set the output)
output := signal[laddress + address + 1]
end end;

procedure environment(var environrec:erecord);
{ coordinate multiplexer calculations |
begin
generatesignal (environrec);
multiplexeroutput(environrec);
end;

FIGURE 6.9 The procedure environment and its data structure environrec to-
gether implement the simulated environment presented to the simple classifier
system (SCS).

cedure detectors we see how a copy of the sighal structure is assigned to the
environmental message envmessage In other problems the coding of the envi-
ronmental message requires the mapping of one or more real variables to a bit
string. To do this requires parameter data structures to define the range and
length of each environmental variable required in the message. It also requires
coding and mapping routines to generate and concatenate message substrings.

242

Chapter 6 / Introduction to Genetics-Based Machine Learning

| detector.scs: convert environmental states to env, message)
| detector data declarations)

type drecord = record
end; | For this problem, mo detector record is
required. Normally, the detector record
contains information for mapping environmental
state variables to the environmental bit-string. |

var detectrec:drecord; (| dummy detector record)

procedure detectors(var environrec:erecord; var detectrec:drecord,
VAr envmessage message);
(convert environmental state to env. message)
begin
with environrec do | place signal message in env. message)
envmessage = signal
end;

FIGURE 6.10 The procedure detectors and its data structure detectrec create
an environmental message from the environmental state. In the multiplexer
problem this is quite simple; other problems may require parameter mappings.

The detector routines take care of input from the environment to the 5CS,
but what about actions taken by the 5CS to change the environment? This is
handled by the brief procedure effector shown in Fig. 6.11. In our particular prob-
lem, the mapping between effector and action is very straightforward; we simply
output the winning classifier action as the multiplexer output selected by the
classifier system. In other problems the mapping might require more machinery,
and in those cases the procedure effector might require more involved data struc-
tures and algorithms.

To the Victor Go the Spoils

There is one last crucial piece of information that must flow between environ-
ment and classifier system. When the classifier system has taken the correct ac-
tion (when it has output the correct signal), it must receive an appropriate payoff
from the environment—an electronic carrot—to reinforce its behavior. We could

procedure effector(var population:poptype; var clearingrec:crecord;
var environrec:erecord);
{ set action in object as dictated by auction winner)
begin with population do with clearingrec do with environrec do
classifieroutput := classifier[winner].a end;

FIGURE 6.11 The procedure effector maps the winning classifier action to the
environment.

A Simple Clossifier System in Pascal 243

permit payoff from a human trainer or instructor; instead, for the sake of conve-
nience and consistency we provide a piece of code to monitor the classifier sys-
tem's performance, recognize correct behavior, and deliver the appropriate
reward. The procedure reinforcement does these things in conjunction with its
data structure reinforcemenirec as shown in Fig. 6.12, The algorithm is straight-
forward: if the action is correct, then a reward is paid. In addition to paying re-
ward to the winner, the reinforcement procedures keep track of the proportion
of correct answers for all time and for the past 50 time steps. These performance
statistics are printed in a number of reports.

The Main Event: The Main Program

Blow the trumpet, beat the drums. With the reinforcement procedure in place,
we are ready to hook everything together in the main program as displayed in
Fig. 6.13. The program listing begins with a long sequence of compiler include
directives. These commentlike statements begin and end with brackets (“{" and
“I"); however, the 81 following the left bracket indicates that the named file (for
example, declare scs) should be included in the compilation. All the subcompo-
nent parts of the simple classifier system are thus included in the compilation,
and the main program doesn't actually begin until the begin statement halfway
down the listing.

Next, the program is initialized through a call to the procedure initializa-
tion. In our brief review of the workings of the simple classifier system, we have
ignored some of the more pedestrian aspects of the SCS, such as initialization,
input, and output. The interested reader can find complete listings in Appendix
D to fill in the gaps in this presentation. Following the call to initialization, an
initial environmental message is constructed with a call to defectors. The prelim-
inary round of activity is completed by a call to procedure report.

The main time loop is contained within the repeat-until construct that com-
prises the remaining code. The iteration begins with a call to timekeeper, a pro-
cedure that counts iterations and sets flags for periodic events like printer reports
and genetic algorithm invocations. In rapid succession the SCS then calls envi-
ronment, detectors, and matchclassifiers, to generate a signal, pass it to the rule
and message system, and match classifiers. Thereafter, aoc, effector, and reinforce-
ment are called to hold the auction, apportion credit, set the action, and reward
good behavior.

If it is time to report (if reportflag = true), the report is called. Console and
plot reports are executed if their respective flags are set (as controlled by pro-
cedure timekeeper). The procedure advance is then called to advance the clear-
inghouse variables. Finally, if it is time for the genetic algorithm to be called (if
gaflag = true) then the procedure ga executes the GA and the procedure re-
portga reports GA results. The entire process can then come to a grinding halt if
the user presses a keyboard key (if a key is pressed, the function half interrupts
the program and checks to make sure you are serious about stopping execution).

Chapter & / Introduction to Genetics-Based Machine Learning

{ reinforcement data declarations)
type rrecord = record | reinforcement record type)
reward, rewardcount, totalcount, count50,
rewardcount$0, proportionreward,
proportionreward50:real;
lastwinner:integer;
end;

var reinforcementrec:rrecord;
rfile:text; | reinforcement file - rfile |

function criterion(var rrec:rrecord; var environrec:erecord):boolean;
{ return true if eriterion 1s achieved)
var tempflag:boolean;
begin with rrec do with environrec do begin
tempflag := (output = classifieroutput);
totalcount = totalcount + 1:
count50 := count50 + 1;
| increment reward counters)
if tempflag then begin
revwardcount := rewardcount + 1;
rewardcount50 := rewardcount30 + 1;
end;

(calculate reward proportions: running & last 50 }

proportionreward := rewardcount/totalcount;

if (round(count50 - 50.0) = 0) then begin
proportionrewardS0 :=- rewardcount50/50.0;
rewardecount50 := 0.0; count50 := 0.0 { reset)
end;

criterion := tempflag;

end end;

procedure payreward(var population:poptype, var rrec:rrecord;
var clearingrec:crecord);

| pay reward to appropriate indiwvidual)

begin with population do with rrec do with clearingrec do

with classifier[winner] do begin
strength := strength + reward;
lastwinner := winner
end end;

procedure reinforcement(var reinforcementrec:rrecord; var population:poptype;
var clearingrec:crecord; var environrec:erecord),
| make payment if criterion satisfied)
begin
if ecriterion(reinforcementrec, environrec) then
payreward(population, reinforcementrec, clearingrec);
end;

FIGURE 6.12 The procedure reinforcement monitors performance and pays
rewards for correct answers.

Results Using the Simple Classifier System

Program scs,

| 5C5 - A Simple Classifier System)
l (C) David E. Goldberg, 1987]
(All Rights Reserved]

[$1 declare.scs |
{$1 random.apb)
($1 io.scs)

($1 utility.scs)
[$1 environ.secs)
|51 detector.scs)
{$1 perform.scs)
[$1 aoc.scs)

(41 effector.scs)
[$1 reinforc.scs)
1$1 timekeep.scs)
[$1 advance.scs)
(51 ga.scs)

{$1 report.scs)
($I initial.ses)

begin [main)

initialization;

detectors(environrec, detectrec, envmessage);

report(rep);

with timekeeprec do repeat
timekeeper(timekeeprec);
environment (environrec);
detectors(environrec, detectrec, envmessage);
matchclassifiers(population, envmessage, matchlist);
aoc(population, matchlist, clearingrec);
effector(population, clearingrec, environrec);
reinforcement(reinforcementrec, population, clearingrec, environrec);
if reportflag then report(rep);
if consclereportflag then consolereport(reinforcementrec);
if plotreportflag then plotreport(pfile, reinforcementrec);
advance(clearingrec);
if gaflag then begin

ga(garec, population);
if reportflag then reportga(rep, garec, population);

end;

until hale;

report(rep); | final report |

close(pfile); | close plot file)

end.

245

FIGURE 6.13 The main program scs coordinates all activities for the simple

classifier system (SCS).

RESULTS USING THE SIMPLE CLASSIFIER SYSTEM

With the simple classifier system implemented, we are ready to test its perfor-
mance in learning the multiplexer function. We first list the environmental and
classifier system parameters we choose for these tests and we then run three sets
of experiments: the perfect rule experiments, the default hierarchy (DH) exper-

iments, and the clean slate experiments.

246

Chapter 6 / Introduction to Genetics-Based Machine Learning

Environmental and System Parameters
The environmental and system parameters are set as follows:

nposition = 6
nclassifier = 100 (varies in perfect and DH runs)
pgeneral = 0.5

chid = 0.1
bidsigma = 0.075
bidtax = 0.01
lifetax = 0.0

proportionselect = 0.2
pmutation = 0.02
perossover = 1.0

gaperiod = 5000
crowdingfactor =
crowdingsubpop =
reward =

-

Selection of classifier system parameters remains something of an art form; how-
ever, useful design guides may be obtained by calculating expected steady-state
performance and half-life values at different rates of taxation.

The Perfect Rule Set and the Monkey Wrenches

To test the SCS code, we perform an experiment using the perfect set of rules
shown in Table 6.4. This set consists of eight nonoverlapping rules, where two
rules are required for each address. For example, the rules

###000:0
###100:1

cover the two possible signals for data line DO. To test the apportionment algo-
rithm’s capability, we also perturb the rule set by adding several bad rules (we
call them monkey wrenches). We are interested in knowing whether the classifier

TABLE 6.4 Perfect Rule Set for the Six-Multiplexer

Rule Purpose

###000:0 0 Address/0 Signal
##0#01:0 1 Address/0 Signal
#O0##10:0 2 Address/0 Signal
O###11:0 3 Address/0 Signal
###100:1 0 Address/1 Signal
##1#01:1 1 Address/1 Signal
#1##10:1 2 Address/1 Signal

1###11:1 3 Address/1 Signal

Results Using the Simple Classifier System 247

system can increase the strength of the good rules at the same time it reduces
the strength of the bad rules.

Executing the SCS code, we first answer the interactive queries shown in Fig,
6.14. The system responds by initializing the classifier system and by presenting
the initial report displayed in Fig. 6.15 along with the initial snapshot report in
Fig. 6.16. The classifier system runs for 2000 iterations, terminating with the
snapshot report displayed in Fig. 6.17. Here we see how the correct rules have
achieved high strength values. In fact all good classifiers are at or near their cor-
rect steady state value of

R 1
S, + - =
Cux + Gy 001 + 0.1

= 9.09,

and all bid values are at or near their steady values of
B, = Cyy'Sy = 0.909.

By contrast the rtwo monkey wrenches have strength and bid values near zero.

A graph of correct answer proportion versus iteration is presented in Fig,
6.18. This graph presents a moving average over the last 50 iterations as well as
a performance average over all time. The classifier system eliminates the bad
rules quickly, thereby achieving near perfect performance.

Default Hierarchy Tests

That the classifier system can weed out a few bad rules among the perfect rule
set is somewhat reassuring, but what of situations where we are less fortunate
and have less than perfect rules in the classifier population? In these situations
we want the classifiers to organize themselves into a structure Holland has called
a default bierarchy. In a default hierarchy general rules (those with many #'s)

e e sk e e s i kil i
A Slmple Classifier System - SCS
(C) David E. Goldberg, 1987
All Rights Reserved
ek ok A R I e Rk Rk Rk A

Enter seed random number (0.0..1.0) > 0.3333
Enter classifier filename: perfect.dta
Enter environment filename: enviren.dta
Enter reinforcement filename: reinf.dta
Enter timekeeper filename: time.dta
Enter gen. algorithm filename: ga.dta
Enter report filename: lst:

Enter plot file filename: plot.prn

FIGURE 6.14 Interactive queries precede execution of the simple classifier
system.

248 Chapter 6 / Infroduction to Genetics-Based Machine Learning

Stk s ek s ok R ek R kR
A Simple Classifier System - SCS
(C) David E. Goldberg, 1987

All Rights Reserved
ks sk e R A b e R

Population Parameters

Number of classifiers = 10
Number of positions -]
Bid coefficient - 0,1000
Bid spread = 0.0750
Bidding tax = 0.0100
Existence tax = 0.0000
Generality probability = 0.5000
Bid specificity base = 1.0000
Bid specifieity mult. = 0,0000
Ebid specificity base = 1.0000
Ebid specificity mult. = 0.0000

Environmental Parameters (Multiplexer)

o e e

Number of address lines = 2
Humber of data lines = 4
Total number of lines - [

Apportionment of Credit Parameters

Bucket brigade flag - false

Reinforcement Parameters

Reinforcement reward - 1.0

Timekeeper Parameters

Initial iteration - 0
Initial block - i}
Report peried - 2000
Console report perioed - 50
Plot report period - 50
Genetic algorithm period = -1

Genetic Algorithm Parameters

Proportion to select/gen = 0.2000
Number to select - 1
Mutation probability = 0.0200
Crossover probability - 1.0000
Crowding factor - 3
Crowding subpopulation 3

FIGURE 6.15 SCS initial report displays all system parameters.

Results Using the Simple Classifier System 249

Snapshot Report

...............

| Block:Iteration | = [0:0]

Current Multiplexer Status

Signal = 000000

Decoded address -]

Multiplexer output - L]

Classifier output - 0

Environmental message: 000000

No Strength bid ebid M Classifier
1 10.00 0.00 0.00 ###000:[0)
2 10.00 0.00 0.00 e#el00:[1)
1 10.00 0.00 0.00 ##0w01:[0)
4 10.00 0.00 0.00 #wle0l:[1)
5 10.00 0.00 0.00 #0#%10:[0]
& 10.00 0.00 0.00 w#le=l0:[1)
7 10.00 0.00 0.00 Owssll:[0]
8 10.00 0.00 0.00 1lwwsll:[1)
9 10.00 0.00 0.00 wwsww#:[0)
10 10.00 0.00 0.00 wwwwwn: 1)

New winner [1]) : Old winner [1]

Reinforcement Report

mEsssssssam s e s mm

Proportion Correct (from start) = 0,0000
Proportion Correct (last fifety) = 0.0000
Last winning classifier number = 0

FIGURE 6.16 Imitial snapshot report displays initial rule population. In the
perfect rule set test, the first eight rules are perfect, and the last two rules are bad
(monkey wrenches).

cover the general conditions and more specific, possibly overlapping rules cover
the exceptions.

As an example of a default hierarchy in the multiplexer problem, consider
the following set of rules:

##EH#000 - 0
##OH#01 :
#O##10 :
DO##F#L11 :
HERBHA

[l = I = T = |

If we assume that each rule receives equal payoff when rewarded, and if we fur-
ther assume that when two overlapping rules bid to answer a particular message,
the more specific rule wins, we see how this set of rules constitutes a working
default hierarchy. This is clear because the first four rules handle all 0 output

250

Chapter & / Introduction to Genetics-Based Machine Learning

Snapshot Report

[Block:Iteration] = [0:2000)

Current Multiplexer Status

Signal = 100011
Decoded address - 3
Multiplexer output - 1
Classifier output - 1
Environmental message: 100011

No. Strength bid ebid M Classifler

1 9.09 0.91 0.94 ###000:([0)

2 9.09 0.91 0.97 ###l00:[1]

3 9.09 0.91 0D.82 #x0#01:[0)

4 9.09 0.91 0.85 #w#ls01:[1]

3 9.09 0.91 0.94 #0#el0:[0]

6 9.09 0.91 0.82 #l##l0:[1)]

7 9.09 0.91 1.06 Owwsll:[0)

8 9.09 0.91 0.97 X lwwwll: (1]

9 0.00 0.00 -0.06 X wensss:[0]

10 0.00 0.00 0.10 X wewwss: [1]

New winner [8] : 0ld winner [4&]

Reinforcement Report

Proportion Correct (from start) = 0.9990
Propertion Correct (last fifty) - 1.0000
Last winning classifier number = 8

FIGURE 6.17 Perfect rule set test terminal snapshot report (T = 2000) displays
elevated strength values for the perfect rules and near-zero values for the monkey
wrenches.

cases perfectly and the completely general rule handles the 1 output cases. No-
tice that the completely general rule by itself is only correct half the time. In the
presence of the good rules (and in the presence of a bidding structure that en-
courages specific rules over general rules), the specific rules cover the “mistakes”
of the general rule allowing it to get reward every time it is invoked. In fact the
set of five rules working together as a default hierarchy should perform as well
as the perfect set of eight rules examined in the last section.

We will soon consider how to encourage the formation of default hierarchies
through an appropriate choice of bidding structure. Before we do, we should
understand why we might want to encourage their formation. Default hierarchies
have two advantages over nonoverlapping rule sets:

1. Parsimony
2. Enlargement of the solution set

Results Using the Simple Classifier System 251

1.00
0.88
0.98

0.87

E 0.98
0.95 4
0.94

0.93 4
0.92
0.91 o
0.90 |"|"[—|—'|'IIIIIIII'=I'I‘I '-!.IZ
] 0.2 0.4 0.8 0.8 iﬂnﬂl; .2 1.4 1. 1.
0 Owverall Mll_-rnlm"ﬂumblr + Lost 50

FIGURE 6.18 In testing the perfect rule set, the simple classifier system quickly
lowers the strength of bad rules at the same time it elevates the strength of good
rules. This results in near-perfect performance as measured by an all-time
average.

Default hierarchies are parsimonious, containing fewer rules than nonoverlapping
rule sets for the same problem. In our example, the perfect rule set contains eight
rules (this is the smallest nonoverlapping rule set) and the example default hi-
erarchy contains five rules (this is the smallest default hierarchy). The parsimony
principle is discussed in more depth elsewhere (Holland, Holyoak, Nisbett, and
Thagard, 1986), but its implications to a rule discovery system are manifest. If
we need fewer rules to achieve a high level of performance, our waiting time to
the discovery of a set of good rules is shortened, and we are more likely to
achieve good results quickly.

Default hierarchies also enlarge the set of correct solutions. To see this, we
recognize that the formation of default hierarchies does not adversely affect sys-
tem performance when a set of perfect, nonoverlapping rules is present. As such,
the existence of other rule sets that perform as well can only enlarge the space
of solutions. Moreover, since a default hierarchy is an implicit or virtual structure
(not a physical structure—our rules have not changed), its addition to the system
is achieved with no increase in the size of the problem space. Thus the enlarge-
ment of the solution space with no increase in the size of the problem space
promotes faster discovery of high-performance rule sets.

Besides promoting parsimony and enlarging the solution set, default hierar-
chies encourage knowledge acquisition and overlays in a manner more natural
than is possible with mutually exclusive nonoverlapping knowledge structures
(Holland et al., 1986). We do not belabor this point, but even simple examples

252

Chapter 6 / Infroduction to Genetics-Based Machine Learning

of human common knowledge illustrate how people tend to organize their
thoughts in default hierarchy form. For example, the spelling rule on the tongue
of every school child, “'i' before ‘e’ except after ‘c’ or when it sounds like an ‘a’
as in neighbor and weigh,” is a simple default hierarchy, and many other examples
can be given.

Default hierarchies help encourage more efficient learning in classifier sys-
tems, but how do we make their formation possible? There is more than one
answer to this question; the simplest answer suggests that bid be made propor-
tional to the product of strength and some linear function of specificity:

Bl’ - CMJ'{SP)SI-
where f(Sp) = bidl + bid2*5p. Under these conditions the steady-state strength
of a rule can be derived

R

. i
Coaf(5p) + Co
as can the steady-state bid

L Cbld.f(sp)’ku
* Cuf(Sp) + Con

Assuming that C,,, = 0.1 and €., = 0.01 and assuming that a completely general
rule bids 25 percent of ¢, and a fully specific rule bids 100 percent of C,, we
may calculate the reward-normalized strength and bid values for six-position
rules as tabulated in Table 6.5. If we assume that a perfect default hierarchy exists,
then the presence of an exception will tend to hide the mistakes of a general rule;
all rules contained in the default hierarchy should be rewarded when they win.
In theory we see how this simple bidding structure, with bid taken as an increas-
ing function of specificity, encourages the formation of a stable default hierarchy.
To examine whether this bidding structure encourages the formation of a
working default hierarchy in practice, we perform a simple experiment compar-
ing the specificity-dependent bidding structure to one where bid is proportional
to strength alone. We can perform these experiments without change to the SCS
code because the four coefficients bidl, bid2, ebidl, and ebid?2 are available to
control the bidding structure used. To achieve the default hierarchy described
above (Table 6.5), we set the following values of the bid structure coefficients:

S

bidl = ebidl = 0.250

bid2 = ebid2 = 0.125
To inhibit default hierarchy formation, we set the following values of the bid
structure coefficients:

bidl = ebid] = 1.0

bid2 = ebid2 = 0.0

Two computer runs of the SCS program have been performed using the five-
rule default hierarchy presented earlier (some monkey wrenches have been

Results Using the Simple Classifier System

TABLE 6.5 Normalized Steady-State Strength
and Bid Values for Default Hierarchy Tests

Specificity-(Sp) J(5p) S./R, B./R,
0 0.250 28.57 0.714
1 0.375 21.05 0.789
2 0.500 16.67 0.833
3 0.625 13.79 0.862
4 0.750 11.76 0.882
5 0.875 10.25 0.897
6 1.000 9.09 0.909

253

thrown in as well). The results of the two runs, one without default hierarchy
(no DH) and one with default hierarchy (DH), are presented in Fig. 6.19 and 6.20
respectively. The run without default hierarchy is unable to perform as well as
the run with default hierarchy, as we should expect. Without an appropriate bid-
ding structure, the default rule (######:1) wins against exception (perfect)
rules when it should not. These mistakes lower the default rule’s strength enough
so the correct rules win once again. Under these circumstances, the default rule
is no longer making as many errors and its strength goes back up, and once again
it starts winning when it should not. Without a bidding structure to encourage a
stable default hierarchy, this cycle of events can only repeat itself, with lowered

1.00

0.99
0.98
0.97 o
0.96 ~
0.95
0.94 -
0.83 -
0.92 -
0.91 -
0.80
0.89
0.88 ~
0.87
0.86
0.85 4
0.84 o
0.83
0.82 -
0.81 -

Proportion Correct

0.80 L) L) L] Ll T T L T T L]

] 0.2 0.4 0.6

o Owverall Avg.

0.8 1
(Thousands
iteration Mum!

1.2

1

+ Lost 350

4

1.6

T
1.a

2

FIGURE 6.19 without specificity-dependent bidding, the classifier system is

unable to use the default hierarchy rules accurately.

254

Chapter 6 / Introduction to Genetics-Based Machine Learning

=

1.00

VVYV VA

0.98 4 - o
0.87 +
0.86 ~
0.95 -
0.94 +
0.93
0,82 4
0.91 4
0.80 +
0.88 -
0.88
0.87 +
0.88 -
0.88 S
0.84 <
0.83 +
0.82 +
0.81 -

o.Bg rr:e:r.rrereTre T T T
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.8 1.8 2

ltﬂrullon-::::r-llur
3 + Last 50

Proportion Correct

o Overall Avg

FIGURE 6.20 With specificity-dependent bidding, the classifier uses the default
hierarchy to achieve near-perfect performance.

system performance the inevitable result. By contrast, in the run with specificity-
dependent bidding, enough difference exists between specific and general rule
bids (at steady state) to allow consistent selection of exception rules when they
are matched. This action permits the formation of the accurate default hierarchies

we desire.

Learning from the Tabula Rasa: A Member of the
Clean Slate Club

In this section we examine the performance of the simple classifier system on
the six-multiplexer problem starting from a randomly generated set of 100 rules.
We perform two SCS simulations, one without the genetic algorithm enabled (no
GA) and one with the genetic algorithm enabled (GA). In this way we are able
to separate the learning due to apportionment of credit among the original rules
and that due to the injection of new rules by the genetic algorithm.

In both cases we start from the same randomly generated set of 100 rules
using the same random seed and generality probability pgeneral = 0.5. The pa-
rameters of an earlier section are used in both cases. In the run with GA, the
genetic algorithm is invoked every 5000 iterations, and 20 percent of the current
population undergoes reproduction, crossover, mutation, and replacement by
crowding.

The results without the genetic algorithm are presented in Fig. 6.21. Here we
see how the apportionment of credit algorithm adjusts the strength values of the

Results Using the Simple Classifier System 255

Proportion Correct

0.3 -+ T T T T T ™ T T

(Thousands
Iteration Number
O Owverall Avg. — Loast 50

FIGURE 6.21 Wwithout the genetic algorithm activated, the SCS is able to achieve
better-than-random performance by organizing extant rules into a default
hierarchy.

rules, achieving a steady performance of 88% correct. Although the 50-step mov-
ing average varies above and below this level of performance, in the long run the
classifier system is able to sustain this relatively high level of performance even
without genetic action. That the classifier system without the GA performs this
much better than a coin toss should come as no surprise. A random rule set of
100 rules contains a rich subset of rules for this relatively small problem, and the
bidding mechanism with default hierarchy formation permits the good rules to
work well together.

With such high performance without genetic action, we might expect the
genetic algorithm to have a hard time improving on the solution, but this turns
out not to be the case. Results with the GA shown in Fig. 6.22 show improvement
over the no-GA results to the point where the classifier system is performing
correctly 95-96 percent of the time. This is especially remarkable considering
the relatively infrequent genetic action; the population is turned over only twice
in 50,000 iterations (0.2-100-50,000)5000 = 200 new offspring by genetic
action).

On the one hand these results are encouraging. A classifier system with ge-
netic algorithm has performed better than one without, and furthermore the level
of performance has been high enough to rival human accuracy. On the other hand
the problem is a toy problem where only 2° = 64 different situations are ever
presented to the system. Recall, however, that our goal has been to devise the
simplest possible working classifier system. We have ignored many obvious bells

256

Chapter 6 / Introduction to Genetics-Based Machine Learning

I =y =
! ild"l.. T | (i

FIGURE 6.22 with the genetic algorithm activated, new rules are injected into
the classifier store at regular intervals to improve performance even further over
that of Fig. 6.21.

and whistles (the next chapter will show how classifier systems have performed
as well on larger multiplexer problems with over a million different signals).
Moreover, we have (willingly) tied our hands behind our backs by using the
genetic algorithm as our only rule discovery heuristic. There are other ways to
generate good rules. We might fuse environmental messages with correct an-
swers (following reward) and insert these perfect—albeit too-specific—rules in
the population, or we might generalize such perfect rules by placing #'s at some
number of positions. Although many such techniques can—and perhaps should—
be adopted to try to boost performance, our goal has been to isolate the contri-
bution of the genetic algorithm as a rule discovery mechanism. Having done this,
we are freer to open our sights to other means of enhancing learning in classifier
systems and other genetics-based machine learning systems.

SUMMARY

In this chapter we have explored the background, principles of operation,
implementation, and performance of a classifier system. Classifier systems are a
form of genetics-based machine learning (GBML) system, combining a simple,
parallel production system based on string rules, an apportionment of credit al-
gorithm modeled after an information-based service economy, and genetic algo-
rithms. Classifier systems and their derivatives are finding increasing application
in science, engineering, and business circles.

Summary 257

We have seen how the backbone of a classifier system is its rule and message
system, a type of production or rule-based system. The explosion in rule-based
expert system applications lends credence to the notion that rules are an appro-
priate way to represent human knowledge and understanding. As with other pro-
duction systems, the rules in a classifier system are of the form, if <condition=
then <action>; however, in classifier systems, conditions and actions are re-
stricted to be fixed-length strings where explicit pattern recognition is provided
by providing a don't care or wild card symbol, the #. Additionally, classifier sys-
tems depart from the expert system mainstream by demanding parallel rule ac-
tivation. This alleviates the bottleneck of one-rule-at-a-time schemes, thereby
permitting multiple simultaneous thoughts and actions. When classifier systems
must arbitrate berween mutually exclusive, competing alternatives, they also de-
part from the mainstream by using competitive arbitration strategies rather than
order-dependent or other arbitrary procedures.

In the most general classifier systems, classifiers send messages that are
placed on a message list, thereby activating other classifiers or action triggers
called effectors. The presence of a central message list provides a centralized
communication channel. Since space is limited on the message list, some method
must exist for choosing among competing messages. In many classifier systems
an apportionment of credit system modeled after a competitive service economy
ensures that rules are properly evaluated and selected. Rules bid for the right to
send their messages (or take their actions); winning bids are paid to classifiers
that previously sent activating messages. Thus a chain of middlemen forms from
the environment to ultimate action. Competition keeps the system honest; useful
classifiers live and prosper while unsuccessful classifiers go bankrupt.

The payment made to and from a rule increases and decreases its net worth,
called its strength. Strength determines a rule’s bid; it also serves as the rule's
fitness in a genetic algorithm search for new rules. The genetic algorithm adopted
in classifier systems is very close to those used in search applications; however,
only a portion of the population is reproduced at a time, and more attention is
focused on who replaces whom.

A reduced version of a classifier system, the simple classifier system (SCS),
has been implemented in the Pascal programming language. To give the 5CS a
concrete problem, a boolean function—a six-bit multiplexer—has been pro-
grammed and interfaced to the classifier system. In initial tests the classifier sys-
tem learns to discount bad rules at the same time it elevates eight perfect rules.
In other initial tests a bidding structure with specificity-dependent bidding learns
to use rule sets containing a default hierarchy. Default hierarchies allow classifier
systems to do more with less through rule parsimony and enlargement of the
solution set. Default hierarchies also appeal to human notions of knowledge over-
lap and exception. In less constrained tests—the clean slate or tabula rasa exper-
iments—starting from a randomly generated set of 100 rules, a classifier system
without genetic algorithm performs better than random guessing, and a classifier
with genetic algorithm outperforms both the SCS without GA and random guess-
ing. These results encourage further investigation of other genetics-based ma-
chine learning applications in the next chapter.

258

Chapter 6 / Introduction to Genetics-Based Machine Learning

H PROBLEMS

6.1. A certain classifier is activated continuously with an overall tax coefficient
of C,,, = 0.01 and a bidding coefficient of C,,, = 0.1. If the classifier receives 10
points of reward per activation, calculate the equilibrium (steady-state) strength
of the classifier as it is activated repeatedly. Calculate the steady-state strength if
the tax coefficient is zero. Calculate the steady-state strength if the tax coefficient
is 0.02.

6.2. A classifier is initialized with a strength of 100 points. The classifier is never
activated, but it is taxed at a rate 0,01, Calculate the number of iterations until
the classifier's strength falls to 90, 80, 70, 60, and 50 points. Repeat the calcula-
tion for tax rates of 0.1 and 0.001.

6.3. The time required for a classifier to lose half its strength under the action
of taxation alone is called its balf-life Derive a general expression for the half-
life as a function of the classifier’s tax rate C,,,. Plot a graph of half-life as a function
of C,.

6.4. A classifier is activated continuously with a bid coefficient C,, = 0.05 and
an overall tax coefficient of C,, = 0.01. At each activation the classifier re-
ceives 1.0 point. Calculate the steady-state bid of this classifier as it is activated
repeatedly. Repeat the calculation for bid coefficient values C,, = 0.01 and
0.1.

6.5. A classifier is activated every iteration with a bid coefficient C,, = 0.1 and
no tax coefficient. On every other iteration the classifier receives 10 points. After
a sufficient number of iterations this classifier oscillates between two strength
values. Calculate these oscillating steady-state strength values and their associated
bid values.

6.6. A classifier is activated every iteration but is paid a reward R once every k
activations. Derive equations for the steady-state strength values for this classifier
assuming it has a specified bid coefficient C,,, and no tax coefficient.

6.7. In the simple classifier system connected to the six-multiplexer problem, a
six-position ternary coding is used for the single condition and a single-position
binary coding is used for the action. Calculate the number of uniquely different
rules for this problem. Calculate the number of rule similarity templates (sche-
mata) for this problem.

6.8. A classifier system is coded with a two-position, ternary condition and a
one-position binary action. In other words the rules have the general format

CC:A

Computer Assignments 259

with C € {0, 1, #} and A € {0, 1}. A population of size n = 12 drawn at random
(each ternary character equally likely, and each binary character equally likely)
has three copies of each of the following rules:

00:0
11:1
##:0
##:1

Calculate the prior probability of drawing an identically distributed population.

6.9. Suppose in Problem 6.8 that the condition positions are selected randomly
so a wild card (a #) is chosen with probability p,....., = 0.8 and the remaining
two characters are chosen with equal probability. Calculate the prior probability
of drawing a population distributed identically to that of Problem 6.8 under these
conditions.

6.10. A classifier C1 is activated and sends a message to classifier C2. C2 is then
activated, causing an action that is rewarded with 10 points. If both classifiers
have bid coefficient values of 0.1 and overall tax coefficient values of 0.02, cal-
culate both classifiers’ steady-state strength and bid values assuming this two-step
activation process continues indefinitely. Recalculate these values holding the bid
coefficient constant while doubling the taxation coefficient.

B COMPUTER ASSIGNMENTS

A. Investigate the effect of crowding on the simple classifier system. Starting
from identical rule populations (using the same random seed for a pseudoran-
domly generated population or the same fully specified population) investigate
SCS rule learning with crowdingfactor values of 1 (no crowding) and 3 (“nor-
mal” crowding setting). Compare and contrast the effectiveness of the rule sets
learned and their composition after 50,000 iterations.

B. Interface the simple classifier system to a simple rule-learning problem of
your choice. What routines must be changed to do this? Be sure to implement
your changes in stages by testing each module individually. It is very difficult to
debug a classifier system as one monolithic block of code because of its size and
its randomness (there is usually no right answer to check against).

260

Chapter 6 / Introduction o Genetics-Based Machine Learning

C. Implement a reinforcement procedure that rewards the simple classifier sys-
tem with ptscorrect when the correct answer is given and ptswrong when the
wrong answer is given. Run the six-multiplexer problem with values ptscorrect
= 1 and ptswrong = 0.5. Compare the performance of this system to the results
presented in this chapter.

D. Implement and test the performance subsystem of a less simple classifier
system with a message list, message passing, and message-sensitive effectors.
What procedures and data structures must change to implement this subsystem?
Try to make these changes while maintaining the modularity of the 5CS.

E. Invent a method of imposing payment sharing to help induce speciation (and
niche) among classifiers within a simple classifier system. Implement this mech-
anism and compare to the champion (winner takes all) scheme implemented in
the SCS code. Discuss the advantages and disadvantages of both methods with
respect to effectiveness and computational efficiency.

Applications of Genetics-
Based Machine Learing

In the previous chapter, we examined the structure, operating principles, and a
particular implementation of one type of genetics-based machine learning sys-
tem, a classifier system. Classifier systems were presented as faits accomplis, as
systems cast confidently in concrete. To make matters worse, the focus on clas-
sifier systems may have given the impression that classifier systems are the only
way to do genetics-based machine learning (GBML). This chapter atones for the
previous chapter’s sins of omission by investigating the roots, early history, and
current state of GBML. We examine the early proposals for reproductive pro-
grams, schemata processors, and broadcast systems. We investigate Cognitive Sys-
tem One (C5-1) and the maze-running tasks it learned. We survey other early
GBML systems and review a number of current theories and applications of these
techniques.

THE RISE OF GBML

The late 1940s and early 1950s were spirited times in the development of com-
puter theory and practice. Perhaps even more than now, the vigorous interchange
between theoreticians and practitioners helped advance the state of computa-
tional art at a rapid clip. At the same time the influence of biological analogy and
metaphor was at an all-time high (in a relative if not an absolute sense), as evi-
denced by the strength of the cybernetics movement, the level of neural network
activity, and the interest in cellular automata, and computational analogs of self-
reproduction. Against this backdrop a number of people began to investigate re-
lationships between natural evolution and artificial adaptation (Bledsoe, 1961;

262

Chapter 7 / Applications of Genetics-Based Machine Learning

Bremermann, 1962; Friedman 1959; Holland, 1962¢; von Neumann, 1966), Hol-
land’s (1962c¢) early outline for a theory of adaptive systems adopted a natural
perspective drawn from biological example. His vision foresaw bands of programs
wandering about a cellular computational space, bumping into one another,
sometimes forming new unions (Holland, 1962c, pp. 306-307):

The free generation procedure . .. requires the generators (and combi-
nations of generators) to “shift” and “connect” at random in the com-
puter. The simplest form of random shift occurs under the following
conditions: (1) at each moment of time a generator has a fixed probabhil-
ity of shifting to one of its neighboring modules; (2) if a generator at-
tempts to shift to a module already occupied by another generator, such
a shift is prohibited. ... Under conditions ... two or more generators
occupying adjacent modules (“in contact”) may become connected.
Such connected sets of generators are to shift as a unit.

This vision was not independent of his earlier proposal for iterative circuit com-
puters (Holland, 1959, 1960), fine-grained, homogeneous parallel processing ar-
chitectures with relative addressing using a process of path building; bands of
wandering programs could be conveniently programmed in such Holland
machines.

Schemata and Their Processors

Despite the appeal of these ideas, the proposals for elastoplastic billiard ball pro-
grams bouncing about a cellular computer were a long way from any working
adaptive system, as Holland himself realized. The desire for a working demon-
stration led him to consider (Holland, 1965) one of the notable successes of early
machine learning efforts, Samuel’s (1959) learning checker player. Samuel’s no-
tions of consistent prediction were to guide the development of apportionment
of credit algorithms in later GBML systems; these developments did not, however,
halt the search for the theoretical basis of reproductive adaptation. Both lines of
inquiry crystallized in two works that would have a profound effect on the de-
velopment of all later GBML efforts. The first work, “Hierarchical Descriptions,
Universal Spaces, and Adaptive Systems” (Holland, 1968, 1970a), discussed the
description of complex machines built from a limited number of fixed compo-
nents and the meaning of schemata or subcomponent templates within such ma-
chines. The second, more restricted (yet from the standpoint of future GBML,
more interesting) work, “Processing and Processors for Schemata” (Holland,
1971), presented the first concrete proposal for a generalized GBML system. In
this work Holland proposed the development of schemata processors in four
phases. Schematics for three of the four prototypes are presented in Fig. 7.1. The
prototypes increased in complexity from prototype I, a simple stimulus-response
machine, to prototype IV, a complex automaton with internal states and modifi-
able detectors and effectors. This proposal served as the basis for what later be-
came the first classifier system. Holland’s artificial evolutionary design of a

The Rise of GBML 263

Detectors Controllers Effectors
=01 |] subsers
E i M [+ Ay |—a
Reservoirg o 4
- L]
- Subset k
Resource
Input —— — Ck o Ry |—»
Payoff)
S Resource Usage
1 f {costs) ;
} Lo i e —--——— /
4
L __________ IS —
Locus
L MNext
s Op. | Opnd1 |Op'nd2| Op'nd3 | Op'nd 4 |~=—-e= Active
Descript. L
Oous
oy Content of
Locus; Reg,
(or input register
of effector)
Locus

{a} Prototype 1: Stimulus-Respanse (SA)

: {3

Detectors m O F roller
- , From all controllers
»
-
L]
L]

(o ;}/

|b) Prototype 1i: Internal Detectors

FIGURE 7.1 Three of Holland's four schemata processor prototypes (Holland,
1971). Prototype IV extends the others by including modifiable effectors and de-
tectors. Reprinted by permission.

264

Chapter 7 / Applications of Genetics-Based Machine Learning

Controllers

[Predictory 1 Response Routine,y

()

—r.-__l Predicted Detectors Subconfig. (0
L] *I
I
I

| .

e

Evaluator e — - = = = =

{e) Prototype i11: Internal Evaluation

FIGURE 7.1 (Continued)

sequence of increasingly complex artificial critters is not alone in the biologically
oriented computer science literature (see Braitenberg, 1984).

The Broadcast Language

While schemata processors never saw the light of cathode-ray-tube day, work
continued on genetic algorithms and GBML. As noted in Chapter 4, the late 1960s
and early 1970s were important times in the development and application of
genetic algorithms in search and optimization (Bagley, 1967; Cavicchio, 1970; De
Jong, 1975; Frantz, 1971; Hollstien, 1971; Rosenberg, 1967). An interesting de-
velopment along the GBML front appeared in the oft-forgotten eighth chapter of
Adaptation in Natural and Artificial Systems (ANAS) (Holland, 1975). In that
chapter Holland proposed the creation of his broadcast language, a Post produc-
tion system (Minsky, 1967; Post, 1943) over a 10-letter alphabet. He suggested
the creation of broadcast units (string rules) with one or two antecedents (con-
ditions) and a single consequent (action). In this system, rules and their messages
were to coexist in a serial string space with parallel control of rule execution.
Although no broadcast language has yet been implemented, the proposal was
important because it showed one way of extending the schemata processor pro-
posal to completeness (Turing machine equivalence) within a computational
framework suitable for genetic operations.

To better understand the broadcast language proposal, let us examine the 10-
alphabet and how it may be used to form broadcast units. The alphabet contains
the following 10 characters:

A == {D) 1! .-I :| 0! '! v" ﬂI_E)'l .}'
Here, the 0 and 1 are the basic symbols for specifying signals. The star * (not to

Development of CS-1, The First Classifier System 265

be confused with the meta-don't-care symbol * used in earlier chapters) is the
basic delimiter for broadcast units (BUs); everything between a pair of stars is to
be interpreted as a BU, The colon (:) is the intra-BU punctuation symbol, sepa-
rating conditions and actions. There are four types of broadcast units:

1. *f:l, Ifl,is matched, broadcast [,.

2. *J.:I, IfI, is not matched, broadcast [,.

3. *f,:zl, IfI, is matched, delete persistent /,.
4. *I:d:0, M1 and 1, are matched, broadcast [,

The I's ({,, 1, I,) are constructed from any characters of the alphabet where the

other symbols are interpreted as follows:

¢ (diamond) Single character don't care symbol (or terminating multiple
character don't care)

(clear nabla) Initial or terminating multiple character don't care symbol
(ignored in other positions) with pass through

(solid nabla) Same as V; permits concatenation on pass through

(clear delta) Single character don't care symbol with pass through

(letter p) A signal marked by a p persists for all time until deleted by
a type 3 broadcast unit

(single quote) A single character preceded by a ' is taken literally

T4

Like schemata processors (and subsequent classifier systems), the broadcast lan-
guage was designed for convenient recognition of patterns of similarity. Holland's
work presented seven examples of broadcast unit usage, including such standard
computational devices as counters and adders and more genetic-specific opera-
tions such as reproduction and crossover. The presentation also briefly discussed
how the broadcast language might be applied in a number of diverse disciplines:

1. Detailed genetic modeling (operon-operator type)
2. Lymphocyte immune network modeling

3. Neural network modeling

4. Pattern recognition system simulation

5. Physical radiative system modeling

Perhaps one day a practical system will be developed with the broadcast lan-
guage's flexibility and convenience in geneticlike computation. Until that time
the unification of processor and processed remains a goal worthy of our efforts
(Holland, 1987b).

DEVELOPMENT OF CS-1, THE FIRST CLASSIFIER SYSTEM

The proposals for schemata processors and the broadcast language, together with
the confluence of important elements of the theory of genetic algorithms, im-
mediately led to the development of the first classifier system during the three
years following the publication of ANAS. A description of this system was pub-
lished by Holland and Reitman (1978). The system, called Cognitive System One

266

Chapter 7 / Applications of Genetics-Based Machine Learning

|Cmsiﬂuaﬁ

O##, #1##, 0%

Hunger = 15

Thirst =8 [Message| 0O
R
> Food =
o1 Predicted poyol] f003" 10
000 Ilqt. Frequency, Mhmnllm]

%303

EAvironmen! s bﬁuu‘ 1

i
(1011, 1111)

|El'rnr.lor Armoy

(o)

Lost Response (1111)

Current Response\(0111)

FIGURE 7.2 Schematic of the first classifier system Cognitive System One, or
CS-1 (Holland and Reitman, 1978). Reprinted by permission.

(CS-1), is shown schematically in Fig. 7.2. The system combined a performance
system based on syntactically simple string rules (classifiers), an epochal appor-
tionment of credit system, and a genetic algorithm. In broad outline, CS-1 and the
generic classifier system described in Chapter 6 have much in common. Here we
focus upon several important differences in rule structure, bidding, and appor-
tionment of credit. We also examine the environment and performance of CS-1
in its maze-learning task.

Referring once again to Fig. 7.2, we recognize an overall structure similar to
that of the generic classifier system description of Chapter 6. A classifier store
(the memory) contains a finite set of classifiers. The classifier conditions, or taxa
(taxon, singular) are constructed over the ternary alphabet {0, 1, #} where the 0
and 1 are basic symbols and the # is a don't care character. In CS-1, conditions
are segmented so that a portion pays attention to environmental signals, a portion
pays attention to the last action, and a portion pays attention to a separate internal
message list. This is somewhat different from the generic classifier system descrip-
tion of the preceding chapter; there we explained how all communications are
posted as messages to the message list. The scheme advocated in the generic
description is perhaps the more unified viewpoint.

Recall that in the generic system description, a classifier system seeks payoff,
and that payoff is distributed to classifiers through the bucket brigade algorithm.

Development of CS-1, The First Classifier System 267

In CS-1, payoff and its distribution are handled somewhat differently. First, the
system maintains separate reservoirs for a finite number of resources correspond-
ing to a number of system needs: in the example schematic we see two resources,
food (hunger) and water (thirst). These resource levels are depleted uniformly
with time and must be replenished. In this way current resource levels are used
to determine current demand, and these demand levels are then used in the de-
cision process to determine which rules to activate. Second, CS-1 does not dis-
tribute payoff with a bucket brigade. Instead, an epochal algorithm is used. Here
an epoch is defined as the time period between payoff events, and elaborate re-
cordkeeping is performed to track a rule’s usage and accuracy. The information
is then used to revise a rule's decision parameters. To understand how this is
done, we need to examine the parameters and their use.

The primary decision parameters for a CS-1 classifier are its predicted payoff
values, the i values. CS-1 maintains a separate value for each resource relevant
to the system (food and water in the example system). To determine which rule
or rules to activate on a given cycle, CS-1 takes a classifier’s predicted payoff
values u; and the current system demand values 4, (where the function specifies
an increasing demand level for decreasing resource reservoir level) and calcu-
lates an appropriateness value o for each classifier according to the following
equation:

o= Ddu,
i

where the summation is taken over all resources i The spin of a weighted roulette
wheel determines the decision winner where the product of appropriateness o
and match score M size the wheel slots (here match score is a measure that
increases with increasing rule specificity).

As the matching and rule activation proceed, the epochal apportionment of
credit algorithm system tracks the accuracy of a classifier’s predicted payoff val-
ues through the use of three parameters: age frequency, and attenuation. The
age parameter is incremented by 1 during each computational cycle; however, as
the classifier receives reward (at the completion of an epoch), the classifier’s age
is reduced by an amount that increases with increasing rule usefulness. This
Ponce de Leon algorithm prolongs a useful rule’s life, because classifier replace-
ment is performed stochastically according to age.

The frequency parameter is incremented each time a rule is activated. It is
used in the weight adjustment scheme to give greater emphasis to more heavily
used rules. The attenuation parameter is a number between 0 and 1, Initially a
classifier's attenuation is set to 1.0. It is decreased whenever a rule has a predicted
payoff value higher than that of the rule’s successor. An attenuation function as
shown in Fig. 7.3 is used as a multiplier to decrease a rule'’s accumulated atten-
uation with increasing error. When payoff actually enters the system, it is distrib-
uted according to attenuation and frequency. Thereafter, the epochal
apportionment of credit scheme continues from payoff to payoff, adjusting pre-
dicted payoff values to agree with actual payoff values.

268

Chapter 7 / Applications of Genetics-Based Machine Learning

Attenuation O

Error E

FIGURE 7.3 Auenuation factor as a function of negative error as used in CS-1
(Holland, ca. 1976). Adapted by permission.

CS-1 in Operation

CS-1 was programmed in Fortran on an IBM 1800 at the University of Michigan.
The implementation contained the following limitations and simplifications:

1. Twenty-five positions per condition with eight bits for the environment, one
bit for the last effector, and 16 bits for internal signals

. One effector with two settings, 0 and 1

. Two resource (needs) reservoirs

. Eight-bit maze node names

5. One hundred classifiers, split 50-50 for each effector

b e

CS-1 was faced with the two maze-running tasks depicted schematically in Fig
7.4. In Fig. 7.4a, we see a seven-node maze where 18 units of food are available
at the left end and 36 units of water are available at the right end. In Figure 7.4b,
we see the transfer task that consists of the original seven-node maze with six
additional nodes, three on each end.

The performance of CS-1 on these two tasks is depicted in Figs. 7.5 and 7.6,
respectively. Figure 7.5 compares three cases: random walk, CS-1 without GA,
and CS-1 with GA. The run with GA outperforms that without, and both learning
runs outperform a random walk. Because of the lower payoff for food (18 food
units as compared to 36 water units), we should expect the system to seek food
twice as often as it seeks water. This behavior was observed in the experiments.

In the transfer experiment, we see the difference in performance between a
naive run (where the rules are generated at random) and an experienced run
(where the classifier system is trained on the seven-node maze first). In this task
the knowledge learned in the first set of experiments does indeed transfer to the
more complex task, as evidenced by the immediate convergence to near-optimal
performance in the experienced trace.

Since the development of CS-1, Holland has continued his theoretical and
experimental classifier system investigations (Holland, 1980a, 1980b, 1981,
1983a, b, 1984, 1985a, b, 1986a, b, 1987a, b; Holland and Burks, 1985; Holland,

enter
trial

@) ©LEI7iEl9 ©
A A T A A
IS S S S S
3 S e o e

ég—c—oa
a o - 0= = &
P = T = T
@ oo oo o P
D ©© 00 0 W
- ocoooo0 o 2

A
enter

EEENERRNENEE
;,.'._..-Ec-—-——m
- o © g o B e
Eog—a-o"ﬂ"oc‘g
4000==0==90900a
,_,_..__——Ooggsa
©® - 000 0o 0O -
gocoococooc’c’g
Spo0oc0co0oo0o0Cc0 o000~ C

FIGURE 7.4 Schematic of (a) initial test environment, a seven-node maze and
(b) the transfer test environment, a 13-node maze (Holland and Reitman, 1978).
Reprinted by permission.

’Q\ Without Learning Algorithm

<. 'dA R ;’P"v -C~ e
I \'.u'

With Learning Algorithm

PER EPOCH

AVERAGE NUMBER OF TIME STEPS

i L a9 8 a1 0 8 1 1 8 |

1 1
0 20 40 60 80 100 120 40 160
BLOCKS OF 10 EPOCHS

FIGURE 7.5 Performance of CS-1 in the initial test environment (seven-node
maze) with and without genetic (learning) algorithm (Holland and Reitman,
1978). Reprinted by permission.

270 Chapter 7 / Applications of Genetics-Based Machine Learning

24

Rondom = 36
22

i

*z
|

l}
|
‘.
l.'i Noive

\ !
A
1 d)]
\ ']

]
[¥ LY A
8 I\J’r \l'/]
Experi

enced ‘o o-0ng

AVERAGE NUMBER OF TIME STEPS PER EPOCH
r
T

BT] EN P A T R I AT el T | |¢I|II:IIII'I|,1II'I'I'I 6
0 20 40 60 8O0 100 120 140 160
BLOCKS OF 10 EPOCHS

FIGURE 7.6 Comparison of naive versus experienced C5-1 on transfer test (13-
node) environment (Holland and Reitman, 1978). Reprinted by permission.

Holyoak, Nisbett, and Thagard, 1986). These subsequent studies have advocated
the use of the bucket brigade algorithm similar to that described in the last chap-
ter. Like the epochal algorithm, the bucket brigade provides a rule payoff esti-

mator; however, the bucket brigade uses less recordkeeping and a strictly local
computation.

SMITH’S POKER PLAYER

C5-1 spawned a variety of offspring. One of the first was S. E Smith’s LS-1 (Smith,
1980, 1983, 1984) Although LS-1 did process spartan string rules with genetic
operators, this was no CS-1 clone; LS-1's architecture was fundamentally different
from that of CS-1 in its string rules, the formation of search structures, and its
genetic operators. In this section we examine those differences and we consider
LS-1's performance in the draw poker task.

The primary difference berween CS-1 and LS-1 is illustrated in the schematic
diagram of Fig. 7.7. Figure 7.7a depicts a CS-like architecture and shows how
individual rules are the basic unit of genetic manipulation; during a computa-
tional cycle the apportionment of credit algorithm evaluates rules and during
genetic algorithm cycles individual rules are mated and crossed, as shown dia-
grammatically. By contrast, the LS-like architecture sketched in Fig. 7.7b raises
our focus one level and entire rule sefs become the object of evaluation and

Smith's Poker Player an

HOLLAND SYSTEM LS-1 SYSTEM

SAMPLE GENETIC ACTION POPULATION SAMPLE GENETIC ACTION

e D RULESET: RIR2RIRA

RULESET2: RIlR22

RULESET® RIOR22R13

RULESET4 R9R12

HlellS
J
il

(a) CS-like system {b) LS-like system

FIGURE 7.7 Comparison of (a) CS-like system and (b) LS-like system architec-
tures. CS-like systems treat rules as individuals for mating and genetic action. LS-
like systems treat rule sets as individuals within a population.

genetic manipulation. In this way, rule sets are evaluated as a group after some
specified number of plays. Thereafter, rule sets are mated, crossed, mutated, and
otherwise genetically altered to create new, possibly better rule sets for evalua-
tion in future plays.

This difference in level of operation is a fundamental one. By raising the level
of genetic manipulation one notch, Smith is able to sidestep the apportionment
of credit issue (almost) entirely. Since a set of rules stands or falls together, a
single measure is all that is required for further computation; no effort need be
expended to determine an individual rule’s contribution to the whole. On the
other hand, the lack of credit assignment is also the method’s greatest drawback.
Because feedback comes so infrequently, learning in an LS-like system tends to
come after relatively large blocks of trials. Nonetheless, the system's performance
in its poker domain is impressive, and we study some of its important character-
istics in more detail.

LS-1 contains an inference engine and rules that are an interesting blend of a
*normal” production system and a classifier system. In Smith's system, working
memory consists of an unordered set of fixed-length, binary elements. A working
memory element is subdivided into a signal portion and a data portion. Produc-
tion memory consists of an unordered set of rules where each rule is a fixed-
length string. The rule antecedent (condition) consists of & fixed patterns; the
first 7 attend to 7 environmental detectors, and the remaining & — 7 patterns
attend to signals contained in working memory. Like a classifier system, Smith

272

Chapter 7 / Applications of Genetics-Based Machine Learning

follows a parallel control strategy: all matched rules fire simultaneously with the
exception of those that cause external action. These are flagged and a probabilis-
tic decision is made to select one external action with the probability of picking
an action proportional to the number of rules voting for that action.

An example can drive home the matching behavior of LS-1 more forcefully.
Suppose we have a pair of environmental detectors and a working memory state
as shown in Table 7.1, and suppose further that we have the following production
rule:

—1##0 O##OH 1##X 0#0X 00lY — 011 REASSERT(Y).

Although this looks something like the classifiers of the previous chapter, there
are several differences. First, the rule antecedent is split into two parts, an envi-
ronmental portion (— 1##0 0##0#) and a working memory portion (the re-
mainder of the lefi-hand side). We notice the presence of classifier-like 0's, 1's,
and #'s, but we also see other symbols. The — character on the first detector
grouping has the effect of a logical not: if a pattern marked with a — is not
matched, the grouping is considered satisfied. In the example, since the 1111 of
the environmental message does not match the pattern 1##0, the negated group-
ing is matched. Continuing with the example (and scanning, as L5-1 does, from
left to right), the second environmental message (01001) matches the second
grouping pattern 0# #0#. Following an environmental match, working memory
is scanned for a match on the working memory groupings. In LS-1 each working

TABLE 7.1 Example of Rule-Memory Interaction in L5-1
Memory at Time T

Environmental
Detector Array Working Memory

SIGNAL DATA

1 2 (1) | 100]1111
@) [o10
(3) | 110| 101010

(4) | 001]101

(5) | 0000|1111

Rule

—1##0 O##0# 1##X 0#0X 001Y — 011 REASSERT(Y)

Working Memory Element Posted at Time T+ 1

Source: Smith (1980). Reprinted by permission.

Smith’s Poker Player 273

memory grouping consists of a prefix, a pattern, and a suffix. Like the environ-
mental portion, working memory rule portion patterns may be prefixed by a not
(the = symbol); they also may be prefixed by an ignore symbol. The ignore sym-
bol causes the interpreter to ignore the particular grouping. The subpattern suffix
may be null, X, or ¥ X and ¥ are two variable names permitted within LS-1, When
first encountered (scanning left to right), a variable takes on the value associated
with the corresponding data component contained in working memory. In the
example, the signal 100 matches the pattern 1## and thereafter the variable X
becomes instantiated with the data pattern 1111. Following this instantiation, the
presence of an X causes substitution by the instance value and the rules of match-
ing proceed as per usual. In the example, pattern 0#0 is matched by the second
signal (010); however, this is not a complete match because the now-instantiated
variable X has a value 1111, which does not match the corresponding data com-
ponent of working memory slot number 2. Scanning down working memory we
observe that the grouping is matched by working memory element number 5
because the signal 000 matches the pattern 0#0 and the value of variable X
(1111) matches the contents of the data component of working memory. The
last pattern is matched by the fourth working memory element (001 matching
001), and the variable Y is set to the value 101.

The X and Y variables give LS-1 rudimentary capability to recognize equality
among data elements. Moreover, they provide the system with the ability to pass
information from the left-hand side to the right-hand side. Once a rule is com-
pletely matched on the left-hand side, it fires by doing two things. First, it posts
its signal to an available working memory slot. Then, the rule evaluates its action
and action argument 1o determine what to post to the working memory slot data
portion. In the example, once the rule is completely matched, its signal compo-
nent is sent to working memory and the action (REASSERT) is executed. The
REASSERT action simply places a copy of the instantiated variable in the data
component slot of working memory associated with this rule’s signal. Thus, in
the example match, the particular rule generates a working memory element
with signal component 011 and data component 101, as shown in Table 7.1. The
actions on a rule’s right-hand side may be task-independent (like REASSERT) or
they may be task-dependent (like “I see your five dollars and raise you five
dollars™).

The rule structure and inference mechanism are straightforward, as is the
genetic processing. LS-1 incorporates four operations in its genetic algorithm:

1. Reproduction

2. Mutation

3. Modified crossover
4. Inversion

The reproduction and mutation operations are much like those discussed in ear-
lier chapters. During crossover, because the structures are of variable length,

274

Chapter 7 / Applications of Genetics-Based Machine Learning

some care must be taken to insure that meaningful building blocks are exchanged,
In LS-1 this is accomplished by performing modified crossover in three steps:

1. Alignment
2. Site selection
3. Exchange

This differs from simple crossover in the addition of the alignment step. Suppose
we have two rule set structures RS, and RS, as follows:

RS, = R1:R2:R3,
RS, = R8:R9:-R4:R7:R6:R5,

where the R's stand for different string rules and the :'s are rule boundaries. Dur-
ing alignment a random rule boundary site is selected for each rule set structure
and the structures are slid until these two boundaries are aligned. For example,
suppose we pick an alignment site of 1 for RS, and a site of 3 for RS,. The resulting
alignment before crossover is as follows:

RS, = R1:R2:R3,
RS, = R8:R9:R4:R7:RG:R5

Thereafter, with the rules aligned at boundaries, LS-1 permits selection of a cross-
ing site at any of the aligned boundaries or within any of the aligned rules, A
parameter (P, _,,, the probability of crossover at a rule boundary) may be ad-
justed to control the proportion of crosses performed at the rule level or at the
bit level. When the crossing site is thus selected, exchange of substructures pro-
ceeds as with the simple crossover operator described in Chapter 3.

The inversion operator is performed as discussed in Chapter 5, with the re-
striction that inversion sites be chosen at rule boundaries. Thus, if an inversion
is performed on RS, at the sites shown below:

RS, = RBARQ:R‘{-:R'{&RG:RS,

the resulting string following inversion is obtained by flipping the included sec-
tion end over end as follows:

RS, = R8:RT:R4:R9:RG:R5.

These operators, together with normal reproduction and mutation, specify the
genetic algorithm used in LS-1.

LS-1 Performance

In the original study Smith used LS-1 to search for good sets of string rules in
Holland and Reitman’s (1978) maze-running task and in a draw poker task. Un-
fortunately, in the maze-running task, Smith presented a different performance
measure from that used in the CS-1 study, so direct comparisons between the two
studies are not possible. Smith primarily viewed the maze-running task as a pa-

Smith’s Poker Player 275

1.0

Pp = 0.5

19.

ug"(t) - maximum ug generated through time t

Lo00 2000 Jooo 4000
t - number of evaluations

FIGURE 7.8 Off-line performance of LS-1 on Holland and Reitman maze-run-
ning task varying the inversion probability P, (Smith, 1980). Reprinted by
permission.

rameter tuning exercise. One interesting series of tests varied the inversion prob-
ability to determine its effect on rate and level of convergence. The results of
that test are reproduced in Fig. 7.8. These results are one of the first clear indi-
cations of the need for inversion in any artificial genetic search application.

The draw poker task was LS-1's primary test. Smith adopted the problem
definition used by Waterman (1968) in an earlier study of machine learning. The
game was a standard rwo-man game of five-card draw poker except that discard
decisions were made algorithmically (the discard decision was made by a fixed
algorithm; the learning system was not faced with learning to discard intelli-
genily) and players were limited to a three-card draw. The system detectors con-
sisted of the following variables:

VDHAND The value of the hand

POT The amount of money in the pot

LASTBET The amount of money last bet

BLUFFO A measure of the chance of bluffing success

276

Chapter 7 / Applications of Genetics-Based Machine Learning

POTBET The ratio of the pot to the last bet
ORP The number of cards replaced by the opponent
OSTYLE A measure of opponent’s conservativeness

In conjunction with these system variables, LS-1 was presented with four decision
alternatives:

CALL Call the opponent’s bet.

DROP Drop the hand.

BET HIGH Bet a random amount between 10 and 20 units,
BET LOW Bet a random amount between 1 and 9 units.

LS-1 played against an algorithmic opponent designed by Waterman as a bench-
mark player. This opponent (called P[built-in]) was judged to play on a par with
good human players; however, its strategy was not adaptive. In the original learn-
ing runs LS-1 quickly learned to “take P[built-in| to the cleaners.” Upon further
investigation, Smith found a flaw in P[built-in] that prohibited it from playing the
extended series of rounds required in the LS-1 study (something like 40,000
rounds). A modified P[built-in] was better able to hold its own against 1S-1; how-
ever, even against the improved opponent LS-1 was able to evolve rule sets that
agreed with well-known poker axioms 82 percent of the time. This performance
is comparable to that achieved by Waterman's adaptive system. LS-1's perfor-
mance is even more remarkable because it was given no nonpayoff information
during its learning process. By contrast, Waterman's learner received explicit de-
cision matrix information to assist its adaptation.

OTHER EARLY GBML EFFORTS

CS-1 begat LS-1 and together they have begotten a growing family of genetics-
based machine learning efforts. This section reviews a number of these efforts,
including Booker's food and poison learner, Wilson's EYE-EYE and ANIMAT sys-
tems, and my dynamic control classifier system.

Seeking Food and Avoiding Poisons

Booker explored the connections between classifier systems, natural intelligence,
and artificial intelligence in his doctoral dissertation (1982). His study paved the
way for further GBML efforts by investigating three things:

1. Connections between classifier systems and cognitive science

2. Modifications to genetic algorithms that facilitate machine learning
applications

3. Applications of classifier systems to the problem of finding food and avoiding
poisons in a two-dimensional space

Other Early GBML Efforts 277

Booker's study is well grounded in the principles and literature of cognitive sci-
ence. The interested reader is encouraged to sample the fruits of his abundant
orchard; however, in keeping with our practical bent, we partake of only the
ripest (and most directly applicable) of his crop. We concentrate on his innova-
tions in GA usage and his two-dimensional learner.

Booker adopted a classifier system with direct roots in CS-1. The system used
Holland-style classifiers, a bucket brigade apportionment of credit mechanism,
and a genetic algorithm. To look deeper inside the gray matter, Booker changed
the CS-1 architecture to the one shown in Fig. 7.9. The structure is similar to the
generic description of Chapter 6 and to the structure of C5-1 in the presence of
effectors, detectors, a message list, and a classifier store; however, in the figure
we notice a significant difference. Booker’s system contains two classifier stores
and two message lists. This was done as a matter of experimental convenience;
because Booker was interested in the mental conclusions drawn by his system,
he separated those conclusions from their translation into action by splitting both
classifier store and message list.

Prior to cranking out learning runs on his food and poison environment,
Booker studied a number of genetic operators in a pattern-searching task. He
created populations of ternary strings (over the classifier alphabet {0, 1, #}) and
compared them to binary strings of the same length generated at random by a
specified schema. For example, in one experiment he generated binary strings of
length 16 at random using the template:

11111111 neneny

Populations of ternary strings (something like classifier conditions without ac-
tions) were used to classify these strings using various match score measures as
the fitness function for further genetic search. In different experiments he devised
and used different match score measures. Thereafter, GA results under the differ-

Parteption Affect
Classifiers L‘.Iqsaifiers\
— | Message M *oF =
INPUT —> . sesase code
— | List#l List #2

FIGURE 7.9 The food-poison classifier system used a split architecture for ex-
plicit examination of the system’s gray-matter (rules and internal messages) fol-
lowing learning (Booker, 1982). Reprinted by permission.

278

Chapter 7 / Applications of Genetics-Based Machine Learning

ent match scores were compared on the basis of on-line and off-line correct clas-
sification. These experiments led to the choice of a match score calculated as
follows:

if the taxon matches
NCARES + (taxon length)

otherwise, 1 for each correct attribute
plus 0.75 for each #

match score =

Controversy continues over the utility of such partial matching. Booker has
introduced other match scores (Booker, 1985) that answer some of the objec-
tions to his early measure; however, a number of researchers are opposed to any
form of partial matching. The importance of this issue becomes clear if we view
the matter architecturally. A classifier system may be thought of as a highly con-
nected network (much like a neural or connectionist net). Who matches whom
(and how strongly) determines which units are directly connected to one an-
other. Partial matching answers the question by saying that all units are con-
nected to one another to some extent. All-or-nothing matching says that network
wiring is restricted. This controversy will be put to rest only when theoretical
arguments using an appropriate mathematical framework (Holland, 1986b,
1987a) are developed and backed by confirming simulation results,

To improve the genetic algorithm’s performance on problems with multiple
patterns, Booker introduced two mechanisms: sharing and marriage restriction,
We have already considered the theory of sharing in Chapter 5. In Booker's im-
plementation, taxa (conditions) that matched the same pattern shared in the pay-
off from that activation. In that implementation, payoff was shared according to
match score. This creates an effective crowding pressure to limit the growth of
any one taxon class.

We also examined the motivation behind marriage restriction in Chapter 5.
Briefly, in a population of classifiers serving multiple patterns, crosses between
different subpopulation members are unlikely to assist the search for better clas-
sifiers. For example, if we have two rules 000#1#:1 and 111##0:0 serving the
environmental patterns 000*** and 111*** respectively, there is little profit in
performing crosses between such radically different rules. Mating restriction cor-
responds to a heuristic that might be stated “if two concepts relate to the same
specific example, then try a conceptual cross.” To control such mating probabil-
istically, Booker implemented a like-mates-like rule (positive assortive mating) by
having mates chosen in response to an environmental pattern presentation. Mates
were chosen according to match score under presentation of a particular envi-
ronmental pattern. Thus, taxa were linked through the messages they classified.
The overall improvement in on-line performance before GA improvements (plan
G0) and after GA improvements including sharing and mating restriction (plan
G2) is shown in Fig. 7.10.

After investigating GA improvements, Booker ran a series of experiments
where he permitted the classifier system to wander about a two-dimensional,

Other Early GBML Efforts 279

2s

n
o
-

--- -y
'''''
e
.....
v
e

na
-
%

LY

s

w

%
(=]
(=]

—
=
T

—
w
v

-

On-Line Value

—
("]
=,

—
—
g,

400 1200 2000 2800 3600 4400 5200 6000
SamplLes Gensraoted

FIGURE 7.10 Comparison of on-line results before (G0) and after (G2) genetic
algorithm improvements in Booker's (1982) pattern-search experiments. Re-
printed by permission,

hexagonally discrete space similar to that shown in Fig. 7.11. In the space were
two types of objects, food (squares) and poison (circles). Each type of object
emitted an intensity aura similar to those shown in Fig. 7.12. As the classifier
system wandered about its space, it could make three possible decisions: AP-
PROACH, EXPLORE, and CONSUME.

In one such learning experiment (Fig. 7.13), classifier system performance
was compared by varying the system's LEARNRATE. LEARNRATE is the period
between GA learning events. As we observe in the figure, when the LEARNRATE
was ser less than the nominal period of reward, the evaluation process tended to
be noisy and the system reached a steady-state level of error production, as shown
in the graph. When the GA period was lengthened (LEARNRATE values 20 and
30)), evaluation tended to be more reliable and the error production went to zero,
Another comparison is shown in Fig. 7.14 in a run with and without genetic
algorithm. The run with GA developed a set of rules over time capable of taking
the error production to zero, while the run without GA was unable to halt the
production of errors.

Eye-Eye Coordination

Contemporaneous with Booker's classifier system development, Wilson (1981,
1985a, personal communication July 8, 1987) was working on a classifier system
for the sensory-motor coordination of a movable video camera (we call this sys-

280 Chapter 7 / Applications of Genetics-Based Machine Learning

- & & ® ® ® @® % ® ® = = @ - = .
- . = s o e e s o w W s ®
. . # & & = & & @ @ ® = & =
Y # £ = = = - . -
e e
. * = ® ® = & - & = - # w =
= ® s # ® = - - - & = & =
- # . & & = # = & & @ @
® & & & @ = -
® e = @ - & o = = = = & = = o
F e e = I - - -
- .- = = . 5 = = = - W . - -
L - - & & = = . & . =
¥ * & 2w & = #F w & & = w & & & & & & =
L ..r . - co.-ad.'
= & & @& ® o @ & = @ @« & & & @ & ® @ @
. e - - ® & ® = - . I
= s = = & & = = = = & & & & & & =
- L ® 2 # @& & @& *® & 2 =& & @ = »
- - #F w & ® = @ ® N T I

FIGURE 7.11 Food (squares) and poison (circles) environment explored by
Booker's (1982) classifier system is laid out in a hexagonally discrete grid.

o 1 22 0N 2 A e e s el e e
1 24222421 -+« « « + = « =
=+ 12211221 « & 2 = = « 2 = =
= 1T 11 « 1101 @« o « =« o = « & = =
r-r--'—a-ll[‘-'-l-'-
* 1 1.7 =« 1 22 1=+ « 2 ¢ o =
s e+ 1 221 & 212421 ¢ ¢+ + +
r o 1 2 4271 -1 22197+ 5+ ==
e e 21 2212221114+« ¢ a

s =

FIGURE 7.12 In the food-poison environment, both foods and poisons emit an
aura that acts at a distance (Booker, 1982). Reprinted by permission.

Other Early GBML Efforts

600 | LEAANARATE
e 1 0

k00 L & |l - 20
= 30

200 L

0 L L | R TEne! | L 1 1 1 L
0 10 20 30 40 S0 &0 70 8O0 390 100
Blocke of 100 triaole

i}

FIGURE 7.13 Food-poison classifier system learning as a function of LEARN-
RATE (Booker, 1982). Reprinted by permission.

4500
4ooo

3as00

Tetal Errors
NN ow
e w o
e o o
e o o

1500
1000 |
500

wiith
beeem Wl thout ®

A 1 1 A 1 L L] 1 1

]

10 20 30 40 SO0 60 70 B8O 90100
BlLocks of 100 trialse

FIGURE 7.14 Classifier system error production with and without genetic al-
gorithm (Booker, 1982). Reprinted by permission.

282

Chapter 7 / Applications of Genetics-Based Machine Learning

tem the EYE-EYE system). The system's primary task was to learn to center an
object in the video camera’s field by moving the camera in the proper direction,
Unlike previous systems, Wilson's environment was actually implemented in real-
time hardware form. A photograph of the apparatus is shown in Fig. 7.15. The
work was strongly influenced by the architecture of CS-1 (Holland and Reitman,
1978, however, it did contain several noteworthy innovations. On the nonge-
netic side of things, Wilson employed a retina-to-cortex mapping with precedent
in nature (Wilson, 1981, 1983) to provide normalized, relatively invariant images
of objects centered in the retina. He used a complex logarithmic mapping w =
In z, where w = u + iv in the cortical plane, z = x + #y in the retinal plane,
and § = \/ — 1. Some cortical images produced by this mapping are shown in Fig,
7.16. Notice how images that have undergone a rotation and a size transformation
map te a similar cortical image under the logarithmic transformation. Such nor-
malization is essential for success with a template matching procedure like a clas-
sifier system. Notice how off-center images map to dissimilar cortical images as
shown in Fig. 7.17. It was for this reason that Wilson concentrated on the cen-
tering task in his initial study. Although Wilson's use of the complex logarithmic
mapping is limited in its usefulness to image processing applications, the idea of
a mapping that produces relatively invariant detector images may be useful in
many areas.

FIGURE 7.15 Photograph of Wilson’s EYE-EYE classifier system apparatus.
Printed by permission of §. W, Wilson.

FIGURE 7.16 Complex logarithmic transformation of images in normal, en-
larged, and rotated perspective. Notice similarities maintained in cortical images
(right side) despite shifting of retinal (left side) images (Wilson, 1985a). Re-
printed by permission.

FIGURE 7.17 Off-center images under complex logarithmic mapping do not
bear much resemblance to their centered cousins (Fig. 7.16). This places a pre-
mium on the centering task, precisely the task Wilson (1985a) undertook in the
EYE-EYE system. Reprinted by permission.

Other Early GBML Efforts 285

Architecturally Wilson's classifier system was similar to CS-1. One difference
was evident in the rule structure he adopted. The conditions in this system were
not the usual one-dimensional string pattern. Instead, a 4 X 4 array of ternary
characters was used as an image template. For example, a rule in Wilson's system
might look something like the following:

#HHHH
##11
HAEH#]L
HHH#

This rule will fire when a triangular pattern of 1's is detected in the cortical image.
To use these two-dimensional structures, Wilson devised a two-dimensional
crossover operator that he termed checkerboard crossover. His description of the
mechanics of this operator is somewhat vague, however, and no theoretical dis-
ruption probability limits were calculated, nor was a definition of a schema given
for this type of operator.

Nonetheless, successful experiments were run on the EYE-EYE coordination
apparatus, although detailed results from these experiments were never pub-
lished. The system did learn appropriate rules to move the camera and thereby
center the object in the video camera image. Work on this system immediately
led to experiments with a more controllable environment and simpler classifier
system architecture in Wilson's ANIMAT.

The ANIMAT Classifier System

Work with the EYE-EYE system convinced Wilson of the need to simplify his
apparatus and perform simple parametric experiments in a well-controlled envi-
ronment. This led to the development of his ANIMAT system (Wilson, 1985b, c,
1986d). Inspired by Booker's two-dimensional critter, Wilson developed a roam-
ing classifier system that searched a two-dimensional woods, seeking food and
avoiding trees. Laid out on an 18 by 58 rectangular grid, each woods contained
clusters of trees (77s) and food (F’s) placed in regular clusters about the space,
A typical woods is shown in Fig. 7.18. The ANIMAT (represented by a *) in a
woods has knowledge concerning his immediate surroundings. For example, sup-
pose ANIMAT is surrounded by two trees (T), one food parcel (F), and blank
spaces (B) as shown below:

BTT
B*F
BEBEB

This pattern generates an environmental message by unwrapping a string starting
at compass north and moving clockwise:

TTFBBBBB
Under the mapping 701, F—11, B—00 (the first position may be thought of as

286

Chapter 7 / Applications of Genetics-Based Machine Learning

T T T
TFT F F T F FT
T T F
T T F T
F TFT TFT F T F
T T T
™ T T T
TFT F TF F TFT F
T
T T T T T
F F T FT F TF TFT
T T
T T T T T
F F F FT F TF
T T T T
T T
F TFT F F F TF
T T T T T

FIGURE 7.18 The ANIMAT system learned to roam around a woods, seeking
food (F's) and avoiding trees (I's) (Wilson, 1985b). Reprinted by permission.

a binary smell detector and the second position as a binary opacity detector) the
following message is generated:

0101110000000000

ANIMAT responds to environmental messages using simple classifiers with
16-position condition (corresponding to the 16-position message) and eight ac-
tions (actions 0—7). Each action corresponds to a one-step move in one of the
eight directions (0 = north, 1 = northeast, 2 = east, and so on). For example,
the rule

O#011#00000#04#:2

is matched by the example message above and dictates a fairly sensible move (for
a hungry classifier system) to the east where food exists. ANIMAT is assumed to
eat any food present in its square (a compulsive automaton?).

The system contains a number of innovations in its performance and genetic
subsystems:

1. Match set, action set tracking with sharing
2. Create operator

3. Partial intersection operator

4. Time-to-payoff estimation

The matching process within the performance subsystem identifies the
match set [M], the set of all classifiers maiched by an environmental message.
Thereafter, a strength-weighted roulette wheel selection is undertaken to decide
the next action. The subset of [M] that agrees with this selected decision is called
the action set |[A]. These classifiers have their strength values reduced by a per-

Other Early GBML Efforts 287

centage and this pool of strength payments is then divided among the members
of the previously active action set [A],_,. In this way Wilson induces an implicit
bucket brigade where environmental reward is implicitly passed up the activating
chain of rules. A similar mechanism was built into the simple classifier system
(SCS) of Chapter 6 (and not used in the multiplexer problem); however, recall
that 5CS contained no sharing. Wilson introduces sharing control of the size of
classifier subpopulations similar to that suggested by Booker.

Another innovation of the ANIMAT system is its use of a create operator.
When ANIMAT is confronted with an environmental message with no matching
classifier, the create operator is invoked. This operator simply takes an imprint of
the environmental message and, with specified probability, generalizes each po-
sition of the imprint (replacing a 1 or a 0 by a #), thereby creating a taxon
guaranteed to match the environmental message. A random action is then se-
lected (an integer between 0 and 7) and appended to the created taxon. This
randomly generated hypothesis is thrown into the classifier store, a weak classi-
fier is deleted, and the system proceeds as usual.

The partial intersection operator is something of a cross between a pure
crossover operator and a pure intersection operator. During partial intersection,
rwo rules with the same action are selected and aligned. For example, with con-
dition length 8 suppose we select the following two rules:

looO##001 :6
01#1101# :686

~ -~

Under a pure intersection operator any position with disagreement is replaced
by a hash. For the example, this operation results in the following rule:

A #HAHOHH 6

Wilson recognized that pure intersection might press too heavily toward exces-
sive generality. To overcome this difficulty, he suggested a crossoverlike modifi-
cation to intersection where two points along the condition are selected at
random and intersection is performed only within this limited intersection zone,
with the remainder of the genetic material coming from the first selected parent.
Using the points marked above with the ~sign as intersection sites, we obtain
the following result from partial intersection:

l# ###001: 6

Wilson also experimented with a mechanism to assist the formation of short
payoff chains in his time-to-payoff estimation scheme. Here, an estimate is kept
of the number of steps to payoff from action set to action set. These are updated
through a local updating scheme and classifiers are thereafter selected for acti-
vation not on the basis of strength alone but rather on the basis of the quotient
of payoff and time to payoff. In this way those classifiers are encouraged that
receive the highest payoff in the shortest time.

Typical results are shown from a run of ANIMAT in Fig. 7.19. At first, the
average time to food is quite long. In the first 1000 trials, learning is quite rapid,

288

Chapter 7 / Applications of Genetics-Based Machine Learning

12 14

Average steps to food
8

-] 1 2 3 4 1 é 7
Number of problems x 1000

FIGURE 7.19 ANIMAT requires decreasing number of steps to food as learning
progresses over 8000 problems (Wilson, 1985b). Reprinted by permission.

with the ultimate average time approaching approximately four steps. For this
woods (the woods of Fig. 7.18), the average number of steps to food under a
random walk is 41 steps, and the minimum expected time to food is 2.2 steps if
ANIMAT had complete global knowledge about food and its location. It is re-
markable that ANIMAT learned the task as well as it did considering how little
knowledge it actually possessed. For it to do much better, it would have to con-
struct a mental map of the woods so it could know where to go when it was
surrounded by blanks. This kind of internal modeling can be developed within a
classifier system framework; however, work in this direction has been largely
theoretical. Additional work is required before such cognitive maps can be ex-
pected to evolve in a classifier system framework.

The Pipeline Operations Classifier System

At about the same time Wilson was finishing his EYE-EYE experiments, | began
working on a classifier system for the learning control of a a simulated gas pipe-
line system (Goldberg, 1983, 1985a—c, 1987a, b). People have often asked me
why a gas pipeline and not some other (perhaps more esoteric) system. Prior to
returning to school, 1 worked for an engineering software firm that provided
numerical modeling software to the gas pipeline industry. As those models be-
came more prevalent in the operating environment (they had been used for de-
sign in one form or another for 30 years), I began to recognize the sharp contrast
between the type of modeling and decision making going on in the minds of
trained pipeline controllers and that which went on in traditional engineering
software (and the minds of the people who design that software). After all, here

Other Early GBML Efforts 289

were pipeline controllers, people with little or no technical training, success-
fully—and relatively efficiently—running a complex system composed of
hundreds or thousands of miles of large-diameter pipe consuming thousands of
hours of compression horsepower day in and day out. In essence these people
were driving their pipelines as you or | drive our family automobiles. By contrast,
engineering software and decision procedures rely heavily on complex mathe-
matical models and methods. These methods are less intuitive and less flexible
(albeit more precise) in their approach to the same environment. It was these
somewhat naive thoughts that led me to work on something having to do with
artificial intelligence and pipeline control. Along the way | bumped into John
Holland's courses on adaptive systems at The University of Michigan. At the time,
I was more than a bit skeptical of what any of this biological stuff had to do with
controlling a gas pipeline; however, | have come to appreciate the beauty of this
natural perspective (unfortunately, most pipeliners still share my former skepti-
cism in this matter).

My study was divided into two components: optimization of pipeline opera-
tions by genetic algorithm and learning control of pipeline operations by classi-
fier system. The first part of this work is briefly reviewed in Chapter 4. The
second part of this work was itself divided into two tasks:

1. Inertial object control task
2. Gas pipeline control task

The inertial object environment is depicted schematically in Fig. 7.20. In this
problem the classifier system tries to center the frictionless inertial object by

PR W W W Y

FIGURE 7,20 The first problem for my classifier system (Goldberg, 1983) was
to learn to center a frictionless, inertial object in one-dimensional space.

290

Chapter 7 / Applications of Genetics-Based Machine Learning

applying a force of specified magnitude to the left or right. This problem was
chosen because of its simplicity and because time-optimal control of a frictionless
object has a known, yet nontrivial, solution. The inertial object problem turned
out to be of interest in its own right as it was one of the first problems to dem-
onstrate the emergence of a default hierarchy.

In the pipeline classifier system, a discrete, first-order system with nonlinear
resistance was used to model gas flow dynamics. Gas demand varied depending
upon the time of year and the time of day, as shown in Fig, 7.21. The environ-
mental state was transmitted to the classifier system by the detectors displayed
in Table 7.2. Inlet and outlet pressure and flow, upstream pressure rate, time of
day, time of year, and temperature were all made available to the classifier as
shown. Additionally, the pipeline was subjected to random leak events where
significant quantities of flow were lost (without explicit measurement) from the
upstream end of the system.

In one set of runs, leaks were placed on the system. The system was rewarded
if it learned to both operate the pipeline and alarm correctly. The time-averaged
point scores for runs with and without genetic algorithm are contrasted to a
random walk as shown in Fig. 7.22. An auxiliary performance measure, the per-
centage of leaks alarmed correctly, is also shown as Fig. 7.23. The results at first
seem somewhat counterintuitive as the classifier system run without genetic al-
gorithm does better on the leaks correct measure (over the interval of record)
than the run with genetic algorithm; however, the mystery is cleared up if we
look at a companion measure, the percentage of false alarms (Fig. 7.24). The run
without genetic algorithm buys the high leaks correct percentage at the expense
of a large number of false alarms. The run with genetic algorithm avoids this

1.5
c
OE
°
s
=]
o
°

0.0

00 24

hour

FIGURE 7.21 Gas demand varies with the time of year and time of day in the
pipeline classifier system (Goldberg, 1983).

Other Early GBML Efforts 291

TABLE 7.2 Environmental Message Template for the Pipeline
Classifier System

LI T T T T T T T T T TT T Tafal

l st |l o | po |l Qo | op | 1op l1ylTel TAG |

Number of
Variable Description Min Max Positions
Pl Inlet pressure 0 2000 2
Ql Inlet flow 0 80 2
PO Outlet pressure 0 2000 2
QO Outlet flow 0 80 2
DP U.S. pressure rate =200 200 2
TOD Time of day 0 24 2
Y Time of year 0 1 1
P Temperature 0 1 1

Source: Goldberg (1983).

undesirable behavior by learning an appropriate leak rule (very much like one
that might be programmed by an expert), thereby learning when to alarm and
when to be silent.

5
with GA
g
5
no GA
2
Random
a
8
g : 3 ' i
0.00 100.00 200.00 300.00 400.00

TIME (DRYS)

FIGURE 7.22 Pipeline classifier system leak runs, comparing time-averaged
point score versus time (time step = 1 hour). Run with GA beats that without and
both classifier runs beat a random walk (Goldberg, 1983).

E“ no GA
g p with GA
o o]
3
2
3 Random
oo §1.
c
o
g
o 8t
[«
%.uu 100.00 200,00 300,00 400,00

Time I(days)

FIGURE 7.23 Pipeline classifier system proportion leaks alarmed correctly.
That the run without GA beats the run with GA is counterintuitive until Fig. 7.24

is examined (Goldberg, 1983).

8,
£
el
=Y no GA
o — s
L]
IE § Random
c
o
-
.
2 &l
ol with GA
o
g : + + i
.00 100,00 200.00 300,00 400,00

Time (days)

FIGURE 7.24 Ppipeline classifier system proportion of false alarms. The run
without GA buys its high proportion correct by alarming falsely a high proportion
of the time (Goldberg, 1983).

A Potpourri of Current Applications 293

A POTPOURRI OF CURRENT APPLICATIONS

Since these early applications of genetics-based machine learning systems, a num-
ber of researchers have carried out theoretical and computational investigations.
This section reviews a number of these studies that have significantly extended
the boundaries of GBML practice.

BOOLE: A Classifier System Learns a Difficult
Boolean Function

Wilson has continued his work in classifier systems with some experiments in
boolean function learning (1986a, b, 1987a). Adopting a problem of Barto, An-
andan, and Anderson (1985), he has developed a system called BOOLE that learns
increasingly difficult multiplexer problems. The 6-multiplexer was introduced in
the last chapter when we considered the simple classifier system. More formally,
we write the 6-multiplexer in disjunctive normal form as follows:

Fy = awya'\d, + ayad, + aa'\d, + aad,,

where multiplication is a boolean AND operation, addition is a boolean OR
operation, and the prime is a boolean NOT operation. This problem may be
extended to larger multiplexers. In general, for & address lines there exist multi-
plexers with & + 2* lines. Wilson has performed experiments on 6-, 11-, and 20-
multiplexer problems in his work.

The classifier system used in BOOLE is very much like that used in the ANI-
MAT work. The system uses simple classifiers with a single condition (one posi-
tion per line) and a single binary action (0 or 1). Sharing of payment is performed
as in the ANIMAT; however, in BOOLE, no implicit bucket brigade is required
because each classifier is immediately rewarded (or not) as a result of its current
action.

Results from the 6-multiplexer are shown in Fig. 7.25. The top line shows a
50-trial moving average of the percentage of correct answers. The lower line
shows the number of rules in the population that are members of the eight-mem-
ber correct rule set. Table 7.3 shows a snapshot of the rule population in descend-
ing order of strength. Notice that the top eight rules are exactly the rules
necessary to construct the multiplexer. This accurate learning is noteworthy con-
sidering that none of these rules existed in the randomly generated initial popu-
lation of 400 rules. It is also impressive when compared to results from the
learning scheme of Barto et al. (1985). To achieve similar levels of performance,
BOOLE required an order of magnitude fewer time steps than did a custom-tai-
lored network of learning units.

In experiments with an 11-multiplexer problem, Wilson added a crossover
control mechanism based on a normalized, population entropy measure H

— 2(8/5,)In(S,/S;)
H, = .
InN

1000,

=
s
1

SOLCT: HASHPCT (10™"): AVSCORE (107")

-

0 | 1 1 L
0. 10. 20. 30. 40. 50. 80.

Number of Trials (10%)

FIGURE 7.25 BOOLE results on the G6-multiplexer. Upper line is the average
score over 50 trials. Middle line is hash percentage. Lower line is the number
of correct rules (of 400) in the rule population (Wilson, 1987a). Reprinted by
permission.

TABLE 7.3 Snapshot of the Classifier Population in BOOLE 6-Mul-
tiplexer Problem after 15,000 Trials

Number of Concept Total
Instances Taxon Action Strength

56
52
48
46
45
41
39
35

7655
7541
7056
7095
6665
5964
6323
5145
1044
522
293
210
330
212
150
219
326
238
129
168
97
100
81
212
56
116

e e b s b B B DY B DY WP O B

R RERRRRERO =~ =R R~ O R
R R EROO R R R TR~ R~
HOH=C =3O RO == %O R R
=~ O RO HE TR R TR -~ " ®R
R e T T R T . T i
—_—o= 00000, =m0 D =D =D -

Source: Wilson (1987a). Reprinted by permission.

A Potpourri of Current Applications 295

where §, is the total strength of the ith subset of identical classifiers in the pop-
ulation, §; is the sum of the classifier strengths, and WV is the number of classifiers
in the population. The control law may be classified as a fixed-percentage, dead-
band controller. If the change in classifier system entropy is sufficiently positive
or negative, the probability of crossover is decreased or increased respectively
by a fixed percentage (10 percent). Otherwise the crossover probability is left
alone. The results from these experiments are shown in Fig. 7.26. Here, runs with
fixed crossover probabilities of 0.5 (dotted line) and 0,12 (dashed line) are com-
pared to the run with dead-band controller (solid line). Wilson is able to get the
best of both worlds using adaptive crossover control, which combines the rapid
exploration of a high crossover rate with the ultimate convergence of a low cross-
over rate as the population hardens. Further experiments are needed to deter-
mine the generality of this technique, however.

Preliminary experiments have been performed with BOOLE on a 20-multi-
plexer problem. In these experiments BOOLE was able to achieve 90 percent
accuracy after 70,000 trials and a solution count of 1200 of 1600 rules by trial
120,000. These results are encouraging when we ponder the size of this problem.
For a 20-multiplexer, there are 2*° = 1.05(10°)—a million—input strings and
2:3% = 6.97(10%)—7 billion—rules. Thus, by trial 120,000 BOOLE has seen less
than an eighth of the possible input strings, and yet the procedure is over 90
percent accurate and still improving. A number of popular, traditional machine
learning technigues have been applied to the multiplexer problem without clear
success (personal communication, 5. W. Wilson, July 8, 1987).

400.
300. -
g 200. |
100. |
0. { 1 1 1 L 1
0. 10. 20. 30. 40. 50. 80.

Number of Trials (10%

FIGURE 7.26 BOOLE 11-multiplexer results with crossover control. Dotted line
is for crossover probability p. = 0.5. Dashed line is for p, = 0.12. Solid line is for
entropy-controlled p_(Wilson, 1987a). Reprinted by permission.

296

Chapter 7 / Applications of Genetics-Based Machine Learning

Parallel Semantic Networks in a Classifier Framework:
CL-ONE

From time to time members of the symbolic Al community have criticized ge-
netics-based machine learning as too simple to explain high-level concept for-
mation and usage. Forrest (1982, 1985b, ¢, 1986, in press) debunked this symbol
chauvinism in her dissertation by demonstrating the implementation of high-level
semantic networks atop a classifier system framework. Forrest concentrated on
the performance component of a classifier system (what we have called the rule
and message system) stripped of its bucket brigade and its genetic algorithm, She
developed a compiler to translate code written in the semantic network language
KL-ONE (Brachman and Schmolze, 1985) to classifier system format. At this point
you may be wondering why we are paying much attention to a system without a
learning component. Forrest’s work bridges classifier systems to long-standing
concerns of more traditional artificial intelligence (Al) researchers. By success-
fully mapping the work of symbolic Al researchers to classifier format, Forrest
has offered, in a sense, an existence proof that classifier systems can emulate the
complex models of symbolic Al. With early genetic learning systems (properly)
focused on learning simple things, it may have been difficult for symbolic Al
researchers to see how such systems might evolve the needed complexity. For-
rest’s work suggests such possibilities.

To understand the system (which Forrest now calls CL-ONE), we examine
its overall structure in Fig. 7.27. There are four major components:

1. Parser and classifier generator
2. Symbol table manager

3. External command processor
4. Classifier system

As shown in the schematic, the classifier generator takes a description of a KL-
ONE network and translates it into a set of classifiers. In so doing, it generates a
symbol table for possible use in the future when new concepts are added to the
network. A user query is translated into message form by the external command
processor. This in turn is presented to the classifier system for computation. To
understand the compilation process, we need to look at the notions behind a KL-
ONE semantic net a bit more.

A schematic KL-ONE network is shown in Fig. 7.28. The network is actually
presented to the system in LISP-like syntax shown in Fig. 7.29 (all except the
YoungMan node, which we regard as a new concept added through the external
command processor). In KL-ONE schematics, concepts are shown as elliptical
nodes (for example, Thing, Man) and roles are drawn as circle-square symbols
(for example, Sex, Limb, Age). In KL-ONE, concepts are the primary objects of
concern. Concepts may be related to other concepts in a number of ways. For
example, the concept Person is a specialization of the concept Thing as indi-
cated by the KL-ONE double arrow. In KL-ONE terminology we say that a SUPERC
link goes from Person to Thing (such links are more commonly called IS-A links
elsewhere in the Al literature). In words, we say that the concept of a person is

A Potpourri of Current Applications 297

KL-DONE
NETWORK
DESCRIPTION

PARSER AND SYMBOL
CLASSIFIER TABLE
GENERATOR MANAGER
CLASSIFIER

SYSTEM

MESSAGE CONAAND

LIST PROCESSOR

CLASSIFIER

STORE

FIGURE 7.27 CL-ONE schematic shows interconnection of the classifier gen-
erator, symbol table manager, command processor, and classifier system (Forrest,
1985c). Reprinted by permission.

a specialization of the concept of a thing or that a Person is a kind of Thing (we
also say that Thing subsumes Person, but more on this in a moment). In the
schematic we also see how concepts are related through roles shown as circle-
square symbols (Sex, Limb, Age).

In KL-ONE, roles are used to further define concepts. One way they do this
is by relating a concept to another concept as shown in the figure. For example,
the schematic defines the concept of Man as a Person with sex value Male. In KL-
ONE this is done using two separate links. In the example, a ROLE link connects
the concept Man with the role Sex and a VR (value restriction) link connects the
role Sex with the concept Male. Used in this manner, roles are like the slots in a
frame-based knowledge representation language. Note that some concepts are
not defined in terms of others. In KL-ONE these concepts are called PRIMITIVE

Thing

Person Gender

¥
YoungMan

FIGURE 7.28 Sample KL-ONE schematic shows interconnection of concepts
(ellipses) and roles (circle-squares). The example is from Forrest’s dissertation
showing the calculation of the most specific subsumers (MSS) for the YoungMan
concept (Forrest, 1985c¢). Reprinted by permission.

(CONCEPTSPEC Person PRIMITIVE

(SPECIALIZES Thing)

(ROLE Limb (VRCONCEPT Legs))

(ROLE Sex (VRCONCEPT Gender)))
(CONCEPTSPEC Legs PRIMITIVE (SPECIALIZES Thing))
(CONCEPTSPEC Gender PRIMITIVE (SPECIALIZES Thing))
(CONCEPTSPEC Male PRIMITIVE (SPECIALIZES Gender))
(CONCEPTSPEC Female PRIMITIVE (SPECIALIZES Gender))
{CONCEPTSPEC Man (SPECIALIZES Person)

(ROLE Sex (VRCONCEPT Male)))
(CONCEPTSPEC Woman (SPECIALIZES Person)

(ROLE Sex (VRCONCEPT Female)))
{CONCEPTSPEC Young PRIMITIVE (SPECIALIZES Thing))
(CONCEPTSPEC YoungMan (SPECIALIZES Person)

{ROLE Sex (VRCONCEPT Male))

{ROLE Age (VRCONCEPT Young)))
(CONCEPTSPEC HighRiskDriver (SPECIALIZES Person)

(ROLE Sex (VRCONCEPT Male))

(ROLE Age (VRCONCEPT Young))).

FIGURE 7.29 KL-ONE network specification syntax example (Forrest, 1983).
Reprinted by permission.

A Potpourri of Current Applications 299

and are marked on network sketches with an asterisk. For example, the concept
Person is PRIMITIVE and requires no further definition. Also note that other KL-
ONE links are implemented in Forrest's system. The interested reader can turn
to the original work to learn about other link types, how they are used and im-
plemented, and why the particular KL-ONE subset was selected.

All this notational paraphernalia is of interest in its own right, but what can
we do with it? One thing we might want to do is ask questions (and get answers)
like “Does Woman subsume Man?” (no) and “Does Man subsume YoungMan?"
(ves). To answer these questions we must be clearer about subsumption. Simply
stated, a concept subsumes another if the subsumed concept is connected by a
path of SUPERC links to the subsuming concept or if certain relations hold be-
rween the definitions of the rtwo concepts. More formally, concept A subsumes
concept B if B has at least the same primitive characteristics as A, if every role of
A is a role of B, and if the value restrictions of the A roles contains the value
restrictions of the respective B roles (actually the subsumption definition is more
involved than this because of number restrictions and role value maps; however,
we stick to the shortened definition for simplicity). From this definition it is clear
why Man subsumes YoungMan. They both have the same primitive (Person*) and
the Man role (Sex) is possessed by YoungMan, and the Man value restriction
(Male) subsumes that of the YoungMan Sex value restriction (Male). The ability
to determine subsumption and maintain inheritance networks is a powerful ca-
pability that forms the basis for a number of symbolic Al reasoning systems.

Another question we might like to ask is, what concepts are most closely
related to another concept? This kind of automatic classification of concepts is
especially important in dynamic knowledge bases where new concepts must be
continually assimilated with existing concepts. For example, given the network
of Fig. 7.28, we ask which concepts are most immediately related to the
YoungMan concept. More formally, we seek the set of most specific subsumers
(MS5s) or the lowest (most specific) concepts in the network which generalize
the new concept. In fact, the example network we have been discussing is a
worked-out example from Forrest's dissertation (1985) of finding the most spe-
cific subsumers of the YoungMan concept (Man and HighRiskDriver are the MSSs
of YoungMan).

We've been down the pasture and around the barn, trying to pick up a little
knowledge about the KL-ONE system, but we have yet to see how Forrest was
able to map a KL-ONE network description to classifier form. The key to this
process lies in the links. As a simple example, consider the SUPERC link, shown
in Fig. 7.30, linking Surfing to the subsuming concept WaterSport. In mnemonic
form this link would map to two classifiers as shown below:

NORM-WaterSport-SUPERC-DOWN => NORM-Surfing-SUPERC-DOWN
NORM-Sur fing-SUPERC-UP = NORM-WaterSport-SUPERC-UP

Here the mnemonics would actually map to patterns of 1's, 0's, and #'s; however,
it is interesting to note the use of two classifiers to permit graph traversal in either
direction. Other types of links require one or more classifiers to describe the link,

300

Chapter 7 / Applications of Genetics-Based Machine Learning

WATER SPORT

FIGURE 7.30 Example SUPERC (IS-A) link is used to illustrate the classifier
mapping Forrest adopted in the CL-ONE compiler (Forrest, 1985). Adapted by
permission.

Some hint of how this is done can be obtained by examining the Pascal-like clas-
sifier description shown in Fig. 7.31. A more detailed description is available in
the original work.

The parser and classifier generator together generate this classifier network
description. Thereafter, the command monitor posts messages to the message list
to initiate subsumption and MSS queries to the system. In addition, Forrest im-
plemented other useful arithmetic (addition, maximum, minimum, comparison),
boolean (set intersection, union, complement, and difference), synchronization
(to coordinate separate activities in time), and memory (push, pop, clear) oper-
ations in classifier form. Together these operations provided CL-ONE with a
good deal of expressiveness, especially considering the system’s “primitive”
underpinnings.

A portion of the study is devoted to calculating complexity estimates for the
various operations. Not only does Forrest show that such a semantic net system
can be written in classifier form, she shows that by mapping one classifier to one
processor (with appropriate interprocessor communication), network queries
can be performed quite rapidly. The work also speculates on the form of a solu-
tion to the inverse compilation problem: How can emerging concepts in a learn-
ing classifier system be decompiled and presented to a user in a sensible manner?
She suggests real-time tracing, static rule analysis, and dynamic problem analysis
as three possible methods for attacking the difficult inverse problem; however,

A Potpourri of Current Applications 301

type
tag = (NORM,ON,HOLD,MEM,NUM,PRE);
boolcontrol = NORM .. MEM;
compare = (AFIELD,BFIELD,CFIELD);
name = string;
message = string;
numeric = 0 .. 63;

classifier record = record
case tag : tagfield

boolcontrol : /* Structural Variant */
(tagfield name);

NUM : /* Numeric Variant */
(tagfield compare numeric);
PRE : /* PreDefined Message Variant */
(tagfield message):
end;
tag: 0 - 2,
name: 3 — 31,

compare: 21 - 25,
numeric: 26 — 31,
message: 3 = 3l.

FIGURE 7.31 CL-One classifier syntax description in Pascal-like declaration
(Forrest, 1985c). Reprinted by permission.

the development of these algorithms is not easy because there is very little con-
straint on the internal representation of external concepts. Nonetheless, Forrest's
important work shows that such representations may exist, can calculate effi-
ciently, and therefore may evolve in a classifier system that learns.

Learning Simple Sequential Programs: JB and TB

You may have gotten the impression that genetic algorithms are only good at
learning programs written in production rule form. This is not the case. An ex-
ample of sequential program learning is provided in Cramer’s (1985) work. Cra-
mer started from the Turing-equivalent language PL (Brainerd and Landweber,
1974), removed go-to statements, and devised a simple language (PL—) for the
calculation of primitive recursive functions. He devised two different coding
schemes for the language, JB and TB, and applied modified reproduction and
modified genetic operators in a search for a simple binary multiplication program.
In this section we examine the language, the codings, the operators, and the
results of these experiments.

302 Chapter 7 / Applications of Genetics-Based Machine Learning

The PL — language has three primitives and two derived operations, as shown
below in LISP-like notation:

1. (:INC VAR), Increment variable VAR by one (primitive).

2. (:ZERO VAR):; Set the variable VAR to zero (primitive).

3. (:LOOP VAR STAT): Repeat statement STAT, VAR times
(primitive).

4. (:SET VARl VAR2): Assign VARl the value VAR2 (derived).

5. (:BLOCK STATl1 STATZ2):. Sequentially perform statements STAT1
and STAT2 (derived).

For example, to implement the multiplication expressed by the Pascal-like nota-
tion V5 := V4 * V3 we might write the following PL— program:

{:ZERO V5)
(:LOOP V3 (:LOOP V4 (:INC V5)))

The program works because the variable V5 is incremented by 1, V4 times, a total
of V3 times, thus leaving the product of V3 and V4.

Although PL— is capable enough, in its present form it is not particularly
amenable to genetic operation. In attempting to put PL— in more GA-friendly
format, Cramer created a language-coding called JB that took ordered triples of
integers as instructions:

(xy z),

where x is the instruction code, y is the first operand, and z is the second oper-
and. The five instructions are assigned numbers as follows:

:BLOCK = 0
:LOOP = 1
:SET = 2
:ZER0 = 3
: INC = 4

Under JB, variable operands name the index of the desired variable and statement
operands name ordered triple indexes. Furthermore, unnecessary operands and
leftover integers are ignored.

For example, the program

(001358132143458989 2)

is interpreted as five ordered-triples as follows:

BLOCK STAT1 STAT2)
ZERO V5); operand 8 ignored

(0 0 1); main statement z
:LOOP V3 STATZ2)

=
(3 5 8); statement 0 —
(13 2); statement 1 —
(1 4 3);: statement 2 —
(4 5 9): statement 3 —

LOOF V4 STAT3)
INC V5); operand 9 ignored;
eftover 9 and 2 ignored

(
{
(
(
(
1

A Potpourri of Current Applications 303

A careful reading of this code shows that it implements the multiplication oper-
ator given before in PL— form. Cramer does not present any results from the use
of |B in any genetic trials; however, he abandoned these first efforts because of
some limited computational experiments (personal communication, N, L. Cra-
mer, July 20, 1987). He believed that use of Smith's variable-length crossover
operators (Smith, 1980, 1983) was insufficient to effect successful genetic search
under JB because of the coding’s high degree of epistasis; however, without more
careful experiments, this conclusion is not firm. Cramer also seemed bothered
by JB's potential for creation of programs that do not halt. The use of statement
names (instead of the statements themselves) creates the equivalent of an uncon-
ditional goto. In simplifying PL, Cramer had hoped to create a language with
guaranteed halting. JB could and did (albeit rarely) get into an infinite loop.

Cramer's thinking about JB did, however, lead to an implementation of PL —
in a tree-based coding that preserved the desired halting characteristic, This tree
scheme, called the TB coding, uses parentheses (o group instructions to any finite
level of nesting. The JB instruction-integer map is used; however, TB is careful to
associate the appropriate number of operands with a particular operator. For ex-
ample, the multiplication program can be written in TB as follows:

(0 (35) (13(14(45)))).

Cramer did perform learning experiments under the TB coding with modified
genetic operators. In his experiments, crossover between mates was taken as the
swap of two randomly chosen subtrees. Mutation was performed as the random
alteration of an integer. Some caution was exercised under mutation to keep the
number of operands consistent with the operator after mutation. Inversion was
mentioned but not attempted.

In a search for a binary multiplication operator, Cramer devised a partial
reward structure to encourage multiplication-like behavior before the emergence
of a correct multiplier. To do this he rewarded three types of near-multiplier
behavior:

1. Any program that changed the output variables

2. Any program that used the input variables

3. Any program that calculated an output variable as a multiple of an input
variable

In addition, a penalty was imposed on very long strings, and any program that
ran beyond a certain time limit was terminated and evaluated. In experiments
with populations of size 50 over 30 generations, TB found many multipliers. Cra-
mer compared these results to a control simulation where no partial credit was
given for partial solution of the problem. TB with partial credit found 72 percent
more correct multipliers than TB with no partial credit. Although these proof-of-
principle results are tantalizing, further work is needed to draw firm conclusions
about this type of GBML system.

304

Chapter 7 / Applications of Genetics-Based Machine Learning

SUMMARY

In this chapter we have examined a number of examples of genetics-based
machine learning (GBML). GBML systems discover better computer programs by
applying selection, recombination, and other genetic operators to populations of
string procedures or programs. We have uncovered the roots of GBML in the early
1960s and have followed its progress to the present time, sampling salient sys-
tems along the way.

We have followed the formal establishment of this field from early rigorous
underpinnings { Holland, 1962c) to later proposals for schemata processors (Hol-
land, 1971). We have seen how these led to a generalized string language ame-
nable to genetic search in the broadcast language proposal (Holland, 1975), and
to the implementation of the first classifier system (Holland and Reitman, 1978)
in Cognitive System 1 (CS-1). These earliest efforts have given way to an increas-
ing volume of research that has divided along a number of lines.

One question that has confronted GBML researchers is whether explicit ap-
portionment of credit is necessary or even useful. The affirmative answer has
been given by Holland and other classifier system researchers. Apportionment of
credit through the bucket brigade (whether to single rules or to rule chains) has
formed an integral part of these systems, leading to relatively rapid learning of
appropriate behavior in difficult environments. The contrary opinion has been
offered by Smith (1980) and others who try to evaluate the usefulness of an entire
program only after an extended series of trials. These systems, too, have learned
appropriate behaviors in difficult environments, but the two types of systems
have never gone head to head using the same performance measures over the
same environments. Perhaps such experiments may one day be attempted; how-
ever, we should recognize beforehand that judgment of the results will be biased
by the selection of performance measure or measures. Rather than trying to “set-
tle the issue,” we should encourage parallel experimentation with both types of
systems, because each has something to contribute to GBML understanding.

Regardless of where one stands on apportionment of credit, the straightfor-
ward syntax of many rule-based GBML systems has raised questions whether such
systems can ultimately process the “concepts” of more traditional artificial intel-
ligence systems. We have answered these questions in the affirmative through
our study of Forrest’s KL-ONE to classifier compiler (the CL-ONE system). This
system takes a description of a high-level semantic network and converts it into
a classifier system representation. At the classifier level, CL-ONE implements im-
portant arithmetic, logical, and network operations. We have noted that CL-ONE
contains no learning component. Thus, questions remain whether and how such
networks may be learned. Nonetheless, this work does show that the concepts of
symbolic Al may be represented and processed in a classifier system framework.

Another question confronting GBML has been the form of program represen-
tations. Simple string rules have been the representation of choice for many sys-
tems. In parallel-firing systems in particular, simple, independent rules make for
a manageable program morsel as rules may be mixed and matched using straight-
forward recombination operators to find new rules (or rule sets). This conve-

Summary 305

nience does not mean that this is the only way to go, although there is only
limited work in GBML with systems using something besides a rule format. The
one example we have examined in this chapter, Cramer's work with the sequen-
tial language PL—, is one approach that has achieved some success. The sequen-
tial arrangement of instructions is closely related to the reordering operators
presented in Chapter 5, and perhaps further thinking along these lines may bear
fruit.

These and other questions will continue to be asked and answered as we
march toward increased use of genetic algorithms in machine learning applica-
tions. We may take some comfort knowing that our trek is not a lonely one; many
fields offer us helpful hints, analogy, and even some mathematics (Holland, 1986b,

pp. 316-317):

The mathematical framework proposed here holds many elements in
common with the mathematics used to study other adaptive systems
such as economies, ecologies, physical systems far from equilibrium, im-
mune systems, etc. ... In each of these fields, there are familiar topics,
with mathematical treatments, that have counterparis in each of the
other fields. Even an abbreviated list of such topics ... is impressive:
1) niche exploitation, functional convergence and enforced diversity
[ecology]; 2) competitive exclusion [ecology]; 3) symbiosis, parasitism,
mimicry [ecology]; 4) epistasis, linkage revision, and redefinition of
“building blocks” [genetics]; 5) linkage and “hitchhiking” [genetics];
6) multifunctionality of “building blocks” [genetics and comparative bi-
ology]; 7) polymorphism [genetics]; 8) assortative recombination (“trig-
gering” of operators) | genetics and immunology]; 9) hierarchical
organization | phylogenetics, developmental biology, economics, and Al];
10) tagged clusters [biochemical genetics, immunogenesis, and adaptive
systems theory]; 11) adaptive radiation and the “founder” effect of gen-
eralists [ecology and phylogenetics]; 12) feedback from coupled proce-
dures [biochemistry and biochemical genetics]; 13) “retained earnings”
as a function of past success and current purchases [economics]; 14)
“taxation” as a control on efficiency [economics]; 15) “exploitation”
(production) vs. “exploration” (research) [economics and adaptive sys-
tems theory|; 16) “tracking” vs. “averaging” | economics and adaptive sys-
tems theory); 17) implicit evaluation of “building blocks” [adaptive
systems theory]; 18) “basins of attraction” and behavior far from equilib-
rium [physics]; 19) amplification of small biases submerged in noise on
“slow” passage through a critical point [physics]. Any complex system
constructed from components interacting in a nonlinear fashion will, in
one regime or another, exhibit @/l of these features. A general mathe-
matical theory of such systems would explain both the pervasiveness of
these features and the relations between them.

Amen (and thank goodness the list was abbreviated). There is no lack of useful
analogy or theory that we may borrow to help guide our search for better GBML.
We are further blessed, as compared to our brothers and sisters who toil in the

Chapter 7 / Applications of Genetics-Based Machine Learning

vineyards of “real” (as opposed to artificial) fields, because we may perform care-
ful simulations of controllable size and scope without excessive concern for a
match berween reality and model. Thus we may observe these nonlinear phe-
nomena in silico with a certain detachment, free to pick and choose among them
to create more useful learners. With the bounty of the artificial and real worlds
spread before us, these are times of high excitement for genetics-based machine
learning,

B PROBLEMS

7.1. Construct an effective rule set for performance of the CS-1 seven-node maze
task with and without the notion of a default hierarchy. Compare and contrast
the number of rules in each set. Is this a general property? Why or why not?

7.2. Repeat Problem 7.1 for the 13-node maze task and compare the results of
the two problems. Explain the transfer task results (Fig. 7.6) in terms of your
answer.

7.3. Compare and contrast the epochal algorithm of CS-1 to the bucket brigade
of later classifier systems. Be sure to discuss the computational benefits and draw-
backs of both procedures.

7.4. Compare and contrast the Holland classifier system approach to the LS-1
approach developed by Smith. Discuss benefits and drawbacks of each approach.

7.5. Select two papers from the burgeoning literature on neural networks or
connectionism. Compare and contrast the learning mechanisms advocated in
these systems and classifier systems. Give complete citations of your selected
papers and be sure to discuss important similarities and differences. What can
connectionists learn from genetic algorithmists and vice versa?

7.6. The following list of strings is to be compared to the taxon 01##100111;

0111100111
1111100111
1000011000
0101010101

Calculate the match score for each of the strings using an all-or-nothing measure
and Booker's partial matching. List advantages and disadvantages for each
method.

7.7. In Wilson’s EYE-EYE system, a rule condition consisted of a 4 X 4 array of
ternary characters. Devise three different crossover operators for this represen-
tation and calculate a lower bound on the survival probability of a schema under
each operator.

7.8. In the ANIMAT system, a partial intersection operator was used. Determine
the resulting string under partial intersection from the following mates where the

Computer Assignments 307

intersection sites are marked by the ~ symbol:

l110#10#1011: 4
0011100 10#1: 4

-~ A

Calculate a lower bound on the survival property of a schema under the partial
intersection operator.

7.9. Calculate the probability of obtaining the “correct” rule set for BOOLE's 6-
multiplexer problem in a population of eight rules if the three alleles are equally
likely. Repeat the calculation for the case when a # is selected with probability
0.8 and the 0 and 1 are equally likely.

7.10. In a B program, how many different programs exist with 10 variables and
10 or fewer statements?

7.11. Design a JB-like language with less epistasis than Cramer’s original coding.

7.12. Using Holland's laundry list of nonlinear phenomena as a guide (see Sum-
mary), select and read three papers from the literature of one particular phenom-
enon (the non-GA literature) and write a short essay explaining the phenomenon
in words and with simple mathematics. Discuss how an analog of the phenome-
non might be useful in a machine learning or search context.

7.13. Using Holland'’s broadcast language, code broadcast units that perform re-
production and crossover.

B COMPUTER ASSIGNMENTS

A. Modify the SCS program of the previous chapter to learn to find food in a
Wilson woods.

B. Using Cramer’s JB language coding, write a program to learn to multiply.
Repeat the experiment, using an underlying binary coding of JB (map JB’s inte-
gers to binary form). Compare and contrast the results from both decimal and
binary codings.

C. Modify the SCS program of the previous chapter to perform CS-1's seven-
node maze-running task. Perform computational experiments and compare your
results 1o those of Holland and Reitman (1978).

D. Implement a version of the broadcast language in the computer language of
your choice.

E. Apply the SCS program to the 6-multiplexer problem of the last chapter, vary-
ing the genetic algorithm period, gaperiod Use values of gaperiod less than,
about equal to, and greater than some nominal period of reward. Compare the
on-line performance values of the three runs. Compare your experiments to
Booker’s LEARNRATE results.

A Look Back, a
Glance Ahead

In seven chapters we have but begun a journey through a set of ideas and accom-
plishments tied together by a single, now too familiar label: genetic algorithm
(GA). In retrospect our travels have been unapologetically bottom up. Moving
from special case to case with some generalization tossed in for good measure,
we have been concerned only with what works and why. We have been little
concerned with the complex epistemologies so commonplace in much of the Al
literature. Yet even this “flaw” in the organization of this book—Ilike most other
things contained therein—has been itself inspired by natural example. Nature is
concerned with that which works. Nature propagates that which survives. She
has little time for erudite contemplation, and we have joined her in her expedient
pursuit of betterment.

This is not to say that our journey has been without philosophical underpin-
ning. In our deeds if not our words, we have been committed to three things: the
abstraction of operators and structures from natural example, the analysis of these
structures and mechanisms with mathematics, and the application of these ab-
stractions to practical problems. More elegant arguments have been put forth
(see Holland, Nisbett, Holyoak, and Thagard, 1986), but even without a more
sophisticated case, the stark simplicity of this methodology has revealed a num-
ber of notions that ring true.

At the beginning of our inguiry into genetic search, we asked an important,
basic question: Given a population of finite structures and their fitness values,
what information is available to guide a search for better structures? The answer
to this question has remained the same through seven long chapters: highly fit
similarities. Without problem-specific knowledge, the only information we can
exploit with any confidence is that contained in highly fit similarities among the

310

Chapter B / A Look Back, a Glance Ahead

structures in a population. If we do not permit experimentation with combina-
tions of these highly fit similarities, then we are stuck with the best of what we
have already seen.

This starting point is simple but fundamentally unassailable. One may quibble
with our refusal to require problem-specific knowledge, but if we need such in-
formation, we quickly find ourselves in a logical quagmire: in the beginning, how
does problem-specific information find its way into a system? This is not to say
that we should refuse to use problem-specific information when it exists; how-
ever, we should take some care to recognize when such usage limits the breadth
of application of a system or technique. For example, problem-specific knowl-
edge may be used to seed GAs and GBML systems with good structures, thus
promoting faster search and learning. Such a use of problem-specific information
does not limit the subsequent application of the core learning or search algo-
rithms to other problems. By contradistinction, the use of problem-specific
knowledge to generate heuristics or operators tailored to a particular application
risks a loss of generality that may very well prevent the use of a system in any
but the original environment. Thus, if we are serious about the development of
canonical search and learning procedures, we must, at the very least, start from
the less knowledge-intensive position.

In search, once we accept this as the appropriate starting point, we must
quickly turn to methods that efficiently process highly fit similarities with a min-
imum of disruption. On our journey this has led us to GAs, the fundamental theo-
rem, and schema processing. The careful reader may again question whether we
have been doing it right, and much of the implementation history of GAs has
revolved around doing it better. Certainly, the myriad implementation decisions
involved in the simplest of genetic algorithms leave the approach vulnerable to
such attack. Less vulnerable to criticism is the processing power we have iden-
tified within GAs called implicit parallelism, where many similarities (some-
thing like »*, where n is the population size) are processed in parallel even
though only a few (something like »n) structures are manipulated during a given
generation. The leverage of implicit parallelism is so important, we have used its
presence or absence as the divining rod between that which is a genetic algo-
rithm and that which is not.

In machine learning, our march has been even less surefooted. Machine
learning, of course, offers manifold opportunities to make mistakes, and there is
really no proof that any artificial machine learning system is in the biological
ballpark. Yet again some simple contemplation gives us hope if not sure confi-
dence along the way. Imagine the search for artificial intelligence as being played
out on the two-dimensional, learning-difficulty field depicted in Fig. 8.1. The
usual approach elsewhere has been to demand the development of complex, non-
adaptive systems capable of human-level performance (points like A). Learning
has been treated as an add-on accessory—a chrome-plated cognitive hubcap—
which can easily be added as soon as somebody unlocks the magic door to learn-
ing. While this approach has yielded impressive programming efforts, it has not
yielded impressive learning behavior and is unlikely to do so. The very complex-

Chapter 8 / A Look Back, a Glance Ahead an

ANALDOGY T

DISCOVERY T
) 1
=
—~ REINFORCEMENT T {f‘
g Ry,

Yo
W %,
=l fé‘g
N0 LEARNING SIMPLE HARD

TASK COMPLEXITY

FIGURE 8.1 Construction of complex nonadaptive systems has resulted in sys-
tems where learning is difficult. The more evolutionary approach of genetics-
based machine learning has resulted in extensible systems that should allow in-
creasingly powerful learning and complexity.

ity of such systems, with their labyrinthine internal structures and algorithms, is
itself a barrier to effective learning. By contrast, the genetic approach demands a
simpler point of departure (like point B) and an evolutionary (hopefully in cul-
tural time, not biological time) development of complexity amenable to adapta-
tion. The key to the graceful development of increasingly complex learning
systems is Holland's notion of a defawlt bierarchy This approach permits the
accumulation of overlapping structures with forces of competition, cooperation,
and specificity determining prevailing beliefs among conflicting structures. This
approach stands in stark contrast to more common methods requiring an unnat-
ural consistency among knowledge structures in some knowledge base.
Unfortunately, the genetic algorithmists’ evolutionary development approach
has not satisfied those who have sought flashy demonstrations as evidence of
intellectual merit, and perhaps this explains the relatively unpublicized devel-
opment of genetic algorithms over the past 25 years; however, recent studies in
search (Davis and Coombs, 1987; Grefenstette and Fitzpatrick, 1985) and ma-
chine learning (Wilson, 1987a) are taking us into uncharted and impressive
waters for the first time. Furthermore, the sound, extensible underpinnings of
these efforts will make further improvement and growth in technique possible.
In search, the near future holds a number of advances. Consolidation at the
foundations of genetic search are possible and are proceeding. These will include
strides in both static and dynamic problem analysis using Walsh functions as well
as dynamic analysis using Markov chains and nonlinear difference and differential

312

Chapter 8 / A Look Back, o Glance Ahead

equations. Application and analysis of microoperators like dominance, inversion,
duplication, and sexual differentiation will become more commonplace, as will
the use and understanding of macrooperators like niche, marriage restriction, and
migration. These advances are easy to foresee, because their beginnings are
among us now. Less easy to predict are the advances that may result from work
not currently in progress. One area for advancement is in the abstraction of mo-
lecular-level genetic operators. Perhaps one day our methods will contain artifi-
cial analogs of DNA, RNA, jumping genes, inverted segments, and a host of other
genetic paraphernalia. These methods may help overcome the limitations of
fixed-length codings in current use. Advances in nonlinear mathematics may also
help advance the analysis of genetic search techniques beyond current frontiers,
Much of the work occurring in chaos and fractals has direct applicability to the
analysis of genetic search systems, and work in fuzzy systems and measures may
provide a useful analytical vantage point for viewing GAs in yet another light,

In machine learning, the crystal ball is somewhat cloudier; however, certain
extrapolations may be drawn. Classification problems will receive increasing
treatment by stimulus-response classifier systems. These techniques are ready for
application, and in moderate to large problems they appear to be more than com-
petitive with extant machine learning and connectionist techniques. Further
progress will be made in encouraging the evolution of longer chains and net-
works of classifiers in classifier systems, and some mathematical tools may be
borrowed from current analyses of nonlinear neural networks. Of course, appor-
tionment of credit won't be the whole story of progress, and extension and anal-
ysis of the notion of triggered operators for the encouragement of nerwork
formation is required and underway. In the longer term, there will probably be a
unification of genetics-based machine learning architecture toward the original
broadcast language proposal. Unification of data and operator (an early advance
in the history of computation) has been rightfully delayed until we have a better
understanding of some of the complex interactions in our systems; however, such
unification will prove logically necessary if these systems are ever to evolve their
own improved operators as solutions to new metaproblems are required.

Though these thorny questions slow our pace, and knotty problems cause us
pause, our journey is at no impasse. With settlements of proven ideas upon which
we may fall back, and outposts of natural notions from which to push forward,
we may venture ahead, clearing the path with a machete of mathematics and a
scythe of computer simulation. And as we stand at this GA frontier, looking out
over myriad opportunities and tasks, we stand tall with the knowledge of what
natural genetics has already created, with the confidence of what we have already
found, and with the eager expectation of what we are about to discover.

Review of
Combinatorics and
Elementary Probability

Understanding the fundamental mathematics of genetic algorithms is not difficult,
but it does require a solid grounding in finite sets, combinatorial counting, and
elementary probability. The aim of this appendix is to provide either a short in-
troduction to the uninitiated or a brief refresher course to the rusty. While these
words can serve as a temporary bridge to the required concepts, they should not
be used as a permanent span to terra firma. This state can only be reached
through the careful study of more standard references (such as Feller, 1968; Hines
and Montgomery, 1980; Papoulis, 1984; Ross, 1976). Nonetheless, in the remain-
der of this appendix we count the finite and ponder the probable. We shall con-
sider the counting principle, permutations, and combinations. We define a finite
sample space, expound the three axioms of probability theory, and consider some
of the important ramifications of those axioms. We briefly consider conditional
probability, Bayes’ theorem, independent events, and some elementary probabil-
ity distributions. Finally, we review the expected value of a simple random vari-
able and consider an important limit theorem.

COUNTING

Most of us take for granted the ability to count, but to count exact quantities of
patterns, classifications, or distinct groupings is an abstract art form that falls
under the heading of combinatorics or combinatorial analysis. Most of the re-

314

PERMUTATIONS

Appendix A / Review of Combinatorics and Elementary Probability

sults of combinatorial analysis derive from a simple fact, the so-called Counting
Principle:

With two experiments M (with m outcomes) and N (with n outcomes),
there are m-n total possible outcomes of the compound experiment MN.

The truth of this principle may be established by enumerating the outcomes in
matrix form. Instead of doing this, let us examine some simple illustrations of the
counting principle in action.

Example 1

A student is certain he will get either an A or a B in Data Structures 101. He
is not sure whether he will get an A, B, C, D, or F in Genetic Algorithms 303,
How many different grading possibilities are there between the two classes?
Answer: There are m-n = 2-5 = 10 possibilities. They can be enumerated
as follows: AA, AB, AC, AD, AF, BA, BB, BC, BD, BE

Example 2

How many unique license plates can be constructed where the first three
characters are letters of the alphabet and the last three characters are decimal
digits?

Answer: There are 26-26-26-10-10-10 = 17,576,000 license plates,

Example 3
How many unique license plates can be constructed using the coding scheme
of Example 2 when no repetition is permitted among the letters or the digits?
Answer: When we select the first letter, we choose from any of 26 letters.
When we pick the second letter we pick from the 25 remaining letters, and
so on. As a result there are 26-25-24-10-9-8 = 11,232,000 unique license
plates with no repetitions of letters or numbers.

Example 4

A United Nations committee contains different numbers of members from
different countries as follows: Japan (7), China (3), United States (6). If a
subcommittee is formed by selecting one member from each country, count
the number of unigue subcommittees.

Answer: There are 7-3-6 = 126 different subcommittees.

A permutation is an ordered arrangement of a set of different items. For example,
consider the six arrangements of the three letters A, B, and C which are enum-

Permutations 315

erated as follows:
ABC, ACB, BAC, BCA, CAB, CBA.

More generally, to count the permutations of # unique items, we recognize
that we start with » options for our choice of the first object and lose one degree
of freedom after each succeeding choice. Therefore, by the counting principle
we count the total number of permutations of n objects as follows:

Number of permutations of n# objects = n(n — 1)n — 2)-32'1 = n!

In general, there are n! (read » factorial) permutations of 7 unique items.

Example 5
How many batting orders are there on a nine-person baseball team?
Answer: 9! = 9-8---3-2-1 = 362 880.

Example 6

Suppose you have 4 genetic algorithm papers (GA), six learning classifier
system papers (LCS), one population genetics paper (GEN), and seven arti-
ficial intelligence papers (Al). How many arrangements of papers are there if
each classification is always grouped together?

Answer: Assume we have a particular ordering of paper classifications, per-
haps GA, LCS, GEN, Al There are 4!6!1!7! = 87,091,200 arrangements of
papers for the assumed classification ordering. Since there are 4! arrange-
ments of the classifications themselves, there are then 4!-87,091,200 =
2,090,188 800 classified arrangements of the 18 papers. This is, of course, far
fewer than the 18! = 6.402(10") unclassified arrangements of the same 18
papers.

Sometimes we are interested in the total number of partial orderings of a
group of n objects. Suppose we want to count the number of unique orderings
of r objects chosen from a set of n objects. We have already performed calcula-
tions like this in early counting principle examples. We can generalize the result
and count the number of permutations of n objects taken r at a time, symbolically
P(nr) (read n permute r) with the computation:

Pnr)y=n(n— 1Xn — 2)-(n — r + 1), rfactors,
Using factorial notation, we can write the expression in more compact form:

Pnr)=nn-1}n-2)(n—-r+1)=n¥n-r)

Example 7

How many nine-person batting orders are possible on a 15-person baseball
team, assuming every player can play every position?

Answer: P(15,9) = 15¥(15 — 9)! = 1,816,214,400.

316 Appendix A / Review of Combinatorics and Elementary Probability

COMBINATIONS

Sometimes we are interested in the number of unique groupings of objects irre-
spective of their ordering. For example, consider the number of unique orderings
of three letters taken two at a time:

AB, AC, BA, BC, CA, CB.

There are clearly 3'/(3 — 2)! = 6 such orderings; however, if we wish to count
the number of pairs where the order of the pairs is unimportant (for example,
when AB and BA are indistinguishable), then we must divide the number of per-
mutations by the number of duplicates. Since the number of duplicates is equal
to the number of orderings of the r objects, the number of combinations among
n objects taken r at a time, symbolically C(#n, r) or (') (read n choose r) is simply
the number of permutations P(#, r) divided by the number of duplicates:

o n! _n(n—1)y(n—r+1)
AR = Q)= = :
That this is true may be reasoned more intuitively with the following verbal
equation:
The number of r the number of the number of r
combinations | - | orderings of | = | partial permutations
among n objects r objects among n objects
Example 8

The U.S. Senate contains 100 senators. How many five-member subcommit-
tees may be formed in this prestigious body?

Answer: Since order of committee selection is unimportant (neglecting ego
and seniority considerations), there are (') = 75,287,520 such
subcommittees.

Example 9

In five-card draw poker, each player is dealt five cards face down. How many
unique deals are there?

Answer: Since order of deal is unimportant, there are (**) = 2,598,960
unique deals.

BINOMIAL THEOREM

We state the binomial theorem without proof:

m+yr=§pwf1

Events and Spaces 317

Because of this fundamental result, the combination quantities (') = C(n, r) are
called the binomial coefficients. The result is useful in a number of combinatorial
and probabilistic computations.

Example 10

Show that X, (}') = 2".
=0

Answer: 2 (1YY /() = (1 + 1)y = 2"
f=0

EVENTS AND SPACES

Suppose we perform an experiment with an uncertain outcome. Let us define the
space § as the set of all possible outcomes. For example, consider a number of
spaces:

Flip of a single coin: § = { Heads, Tails }
Roll of asingle die: S5 = (1,234,561}
Flip of two coins: S ={HH HT TH, TT}

An event E is any subset of the possible outcomes. For example, we consider
the following events:

At least one head in two tosses: E={HH HT, TH }
Roll of a die with value greater than 3: E = {4,5,6}

We may construct new events from the union or intersection of the events
E and E symbolically £ U E as depicted by the shaded area in the Venn diagram
of Fig. A.1. The intersection of events E and F symbolically EF, is illustrated in
Fig. A.2. If the intersection of two events is the null set, EF = @, then we call the
two events mutually exclusive, as illustrated in Fig. A.3.

Finally, we define the complementary event £ where E° contains all events
in the space § not contained in the event E A space §, an event £, and the com-
plementary event £° are depicted in Fig. A.4.

FIGURE A.1 Venn diagram of the union of events F and F

318 Appendix A / Review of Combinatorics and Elementary Probability

FIGURE A.2 Venn diagram of the intersection of events F and F.

ONO.

FIGURE A.3 Venn diagram of mutually exclusive events F and F

EC

FIGURE A.4 Venn diagram of an event F and its complement E-.

AXIOMS OF PROBABILITY

There are three axioms or assumptions in probability theory from which all other
results may be derived. We define the quantity P(E) called the probability of the
event E This quantity must obey the Axioms:

Axiom 1
0=PE)=1.
The probability of an event must be between 0 and 1.

Equally Likely Outcomes 319

Axiom 2

PS) =1
The probability of the space must equal 1.

Axiom 3

For any sequence of mutually exclusive events E, ¢ = 1, 2,... such that
EE = 0fori # j

P(U E) =3 PE)

The probability of the union of mutually exclusive events is the sum of the
event probabilities.

The consequences of probability theory result from these axioms; we state
several of the important results without proof.

Probability of the Complementary Event
P(E) = 1 — P(E).

The probability of the complementary event is one minus the probability of
the event itself.

Probability of the Union of Two Evenis
P(E U F) = NE) + PF) — P(EF)

The probability of the union of two events is the sum of the event probabil-
ities less the probability of their intersection. Although we state this without
proof, the result is intuitive if we refer back to the Venn diagram of Fig. A.2.
This illustrates clearly the double counting that results when we overlay two
overlapping events. The formula above simply corrects this duplication by
subtracting off the intersection probability.

EQUALLY LIKELY OUTCOMES

Many common occurrences are considered to be equally likely: the flip of an
unbiased coin, the spin of a well-balanced roulette wheel, the roll of an un-
weighted die, the selection of a card from a well-shuffled deck. If we limit our-
selves to events where all outcomes are considered equally likely, the calculation
of an event E's probability is quite simple:

number of points in event £
number of points in space §

P(E) =

320

Appendix A / Review of Combinatorics and Elementary Probability

Example 11
What is the probability of rolling a 1 or a 2 on a fair die?
Answer: P(E) = 216 = 1/3.

Example 12
What is the probability of rolling an 8 on a pair of dice?

Answer: There are five ways to make 8: (2, 6),(6, 2),(3,5),(5, 3), and B the
hard way (4, 4). Thus, P(E) = 5/(6:6) = 5/36.

Example 13

What is the probability that a head appears at least once in 10 tosses of a fair
coin?

Answer: Consider the complementary problem (sometimes it pays to look at
the hole and not the doughnut). Clearly, there is only one way (T T T T' T
T T T T T)to get no heads out of the 2' possible length-10 sequences.
Hence, the complementary probability P(F*) = (1/2)", and P(E) = 1 -
(1/2)"° = 0.999.

Example 14
What is the probability of being dealt a royal flush in five-card draw poker?

Answer: There are four royal flushes (one in each suit) out of the () possible
deals. Therefore, P(E) = 4/(%2)= 1.5-10"°%

Example 15

What is the probability of being dealt a straight in five-card draw poker?
Answer: A straight consists of five cards in order where all five cards are not
of the same suit (that would be a straight flush). To count the number of
straights, consider the ordered sequence of cards with a single straight
bracketed:

[A2345])678910JQKA

There are clearly 4-4-4-4-4 = 4° total straights of the A-2-3-4-5 variety be-
cause each of the cards may be varied over any of the four suits; however,
exactly four of those straights are straight flushes, so there are 4° — 4 ordi-
nary A — 5 straights. The same computation holds true for the other straights
in the deck, and by sliding the brackets down the ordered sequence we rec-
ognize 10 such straights. As a result, there are 10(4* — 4) ordinary straights
out of the (%) deals. Thus,

P(E) = 10,200/2,598.960 = 0.00392.

Partitions of an Event n

CONDITIONAL PROBABILITY

In many real life cases, one event hinges on another and it is easier to talk about
or calculate the probability of one event's occurrence given that a related event
has occurred. We call this probability, where one event hinges on another, con-
ditional probability; symbolically we write P(E|F), the probability of event E
given event F has occurred (or just the probability of E given F). We may write
the relationship between conditional probability, the intersection probability, and
the probability of the conditioned event as follows:

P(EF) = P(E|F)P(F)

In words, the probability of the intersection of two events is the product of the
conditional probability of one event given the conditioned event and the proba-
bility of the conditioned event.

Example 16

Joyce has a choice between two courses, one in genetic algorithms and one
in fluid mechanics. If she has a 50 percent chance of receiving an A in the
genetic algorithms course and a 75 percent chance of getting an A in the
fluid mechanics course, what are her chances of getting an A in the genetic
algorithms course if she decides berween the two courses on the toss of a
fair coin?

Answer: Let A be the event where Joyce receives an A, and let G be the event
where she takes the GA course.

P(AG) = P(A|G)P(G),
= 0.50-0.50 = 0.25.

She has one chance in four of getting an A in the genetic algorithms course,
and the fluid mechanics course has no bearing on this outcome.

PARTITIONS OF AN EVENT

Sometimes it is useful to calculate probabilities by partitioning an event into two
or more mutually exclusive events as visualized in Fig. A.5. Suppose we are inter-
ested in the event E but we are more familiar with the relationship between
events E and F Recognizing that EF and EF* are mutually exclusive (see Fig. A.5)
and EF U EF° = E, we conclude that P(E) = P(EF) + P(EF°). Furthermore, using
the conditional probability results of the last section, we may write another useful
relationship:

P(E) = P(E|F)P(F) + P(E|F)P(F)
= P(E|F)P(F) + P(E|F)[1 — P(F)]

322 Appendix A / Review of Combinatorics and Elementary Probability

EFS EF

(L

FIGURE A.5 Venn diagram of a partition of E using F and F-.

Example 17

In Example 16, suppose that Joyce can take fluid mechanics (event F) or
genetic algorithms (event G) but not both, and again suppose that she makes
her decision with the unbiased coin toss. Calculate the probability of her
making an A (event A).

Answer: Partition the A event on the mutually exclusive events & and F:

P(A) = P(A|G)P(G) + P(A|F)P(F),
= 0.5(0.5) + 0.75(0.5),
= 0.625.
BAYES’ RULE
A useful relationship may be derived from the partitioning results and the con-
ditional probability formula by noticing that the intersection probability can be
obtained by conditioning on either of the two events:
P(EF) = P(E|F)P(F) = P(F|E)P(E).
This observation leads to Bayes' rule, which is used to calculate conditional prob-
abilities in many important situations:
peE|Fy = PED) _ P(F|E)P(E)
P(F) P(F|EY(E) + P(F|E)P(E)
INDEPENDENT EVENTS

Two events E and F are said to be independent when the conditional probability
P(E|F) is equal to P(E) alone. Thus, P(EF) = P(E)P(F) for independent events,

Example 18
What is the probability of rolling a deuce on a pair of dice?

Expected Value of a Random Variable 323

Answer: There is one way to make two: both dice must come up showing a
one (event 1):

P(1+1) = P(1)P(1) = (1/6) 1/6),
1/36.

The same result can be calculated by recognizing the deuce as a single out-
come of the 36 possible outcomes in the space.

Example 19
Calculate the probability of n heads in n tosses of a fair coin,
Answer: Let H be the event that a coin comes up a head.
P(n of n heads) = HHZP(H}*”P(H) (n times)

1

I

2

TWO PROBABILITY DISTRIBUTIONS:
BERNOULLI AND BINOMIAL

Often we perform a sequence of trials where each trial has a constant probability
of success, P(success) = p. The single experiment is called a Bernoulli trial and
clearly the two possible outcomes, success and failure, have probabilities that
sum to one: P(success) + P(failure) = p + (1 — p) = 1.

If we perform a sequence of n Bernoulli trials, it is perfectly natural to ask
what is the probability of one, two, or in general & successes. Careful considera-
tion shows that the probability of exactly & successes in # Bernoulli trials can be
calculated (assuming independence of the trials) as follows:

P(k successes in n trials) = (D)1 — py*

This computation is true because a particular sequence of k successes requires
exactly k successes and n — k failures. One particular such sequence has prob-
ability p*(1 — p)"~* Furthermore, since there are exactly (}) different k-of-n
sequences, the computation above follows immediately. This probability distri-
bution is called a binomial probability distribution.

EXPECTED VALUE OF A RANDOM VARIABLE

There are many times when we would like to calculate the usual outcome of
some trial or trials of a random process. More precisely, we say that we would
like to calculate the expected value of a random variable. In a moment, we will
see why the expected value is considered the usual outcome of a random vari-
able. For now, we simply define the quantity.

324 Appendix A / Review of Combinatorics and Elementary Probability

The expected value of a discrete random variable x is defined as follows:

Expected value of x = E[x] = 2, x-p(x).

x

We may also be interested in the expected value of some function of a ran-
dom variable. This may be calculated as follows:

Expected value of g(x) = E[g(x)] = 2, g(x)p(x).

Example 20
A gambler pays $4.00 to roll a single die where he receives the face value in
return ($1.00 for an ace, $2.00 for a deuce, etc.). What are his expected net
winnings (losses)?

Answer: E|gross return|

/6 + 2/6 + 36 + 4/6 + 5/6 + 6/6,
= §3.50.
Net expected loss is therefore $4.00 — $3.50 = $0.50.

LIMIT THEOREMS

The previous section hinted that the expected value of a random variable is in
some way its usual or average value, but how do we know this? Because the proof
of this fact is quite involved, one of the most important limit theorems of proba-
bility theory is presented below without proof.

Strong Law of Large Numbers

Assume a sequence of independent, identically distributed random variables

x, § = 1,2,..., nwith finite expected value. With probability 1:

X Foag+ o
n

— E[x], asn— o

We may also want to know how the partial sum is distributed. The central limit
theorem tells us that the distribution is normal or Gaussian: the distribution of
the sum approaches the well-known bell-shaped curve. We do not need this result
specifically for our work, so we leave its description to standard references.

SUMMARY

In this brief appendix we have examined some fundamental results of count-
ing and probability. The purpose has been to review the basics with an eye to
understanding the subtle operation of a simple genetic algorithm. To that end we
have examined the counting principle and simple combinatorial analysis. We

Problems 325

have considered sample spaces, events, and the axioms of probability theory.
Some of the important consequences of probability theory, including conditional
probability, Bayes' theorem, expectation of a random variable, and the Strong Law
of Large Numbers have been examined. With this background, the discussion and
analysis of genetic algorithm power will go more smoothly.

B PROBLEMS

A.1. Eight people are playing musical chairs with six chairs. When the music
stops, six people sit down, and two are left standing. How many different arrange-
ments are possible for distributing the eight people in the six chairs? Disregarding
the order of seating, how many combinations of six sitters may be chosen from
the original eight players?

A.2. How many unique permutations may be formed from the letters of the fol-
lowing words:

a) turgid

b) sleeper

A.3. A credit card number is constructed as a 10-position code where each po-
sition is taken from the full alphabet (A-Z) or the decimal digits (0-9). How
many different credit card numbers may be constructed in this manner? In storing
the credit card code on a binary computer, a programmer wants to use the min-
imum number of bits (1's and 0's) to represent the code. Calculate the length of
the minimum binary code required to hold the credit card code,

A4. A committee consists of 13 freshman, 6 sophomores, 7 juniors, and 5 se-
niors. If a committee chairman is chosen at random, what is the probability that
the chairman is a) a senior; b) a freshman; ¢) not a sophomore; d) a freshman or
a junior.

A.5. In five-card draw what is the prior probability of being dealt four of a kind?

A.6. A drawer contains 20 white socks and 10 black socks. If five socks are se-
lected all at once and at random, what are the chances of picking exactly two
black socks? How does the answer change if the socks are replaced in the drawer
after each selection?

A.7. On a multiple-choice exam with four answers per question and five ques-
tions, what is the probability of getting four or more questions correct by random
guessing?

A8. A gambler has two coins in his left pocket. One is fair, the other is two-
headed. A coin is selected at random from this pocket and tossed. Calculate the

326

Appendix A / Review of Combinatorics and Elementary Probability

probability the coin will come up heads. If it does come up heads, what is the
probability that the chosen coin is the fair coin?

A9. A million-ticket lottery pays prizes as follows:

1 ticket pays $500,000

10 rtickets pay $50,000

100 tickets pay $1,000
1000 tickets pay §100
10,000 tickets pay $10

If a ticket costs $2.00, what is a ticket holder's expected loss in this lottery? What
is the probability of winning some prize?

A.10. Show that a binomial probability distribution p(j) = (J)p(1 = p)' ™/, j =
0,1,..., n is a probability distribution.

Pascal with Random
Number Generation
for Fortran, Basic, and
Cobol Programmers

This book uses Pascal as the programming language of choice, The availability of
inexpensive, high-quality compilers (see for example, Borland International Inc.,
1985) for personal computers has partially guided this decision. The high degree
of standardization and the well-structured nature of the language have helped
clinch the deal. Since many readers are not familiar with the language, in this
appendix we devote a little time to introducing its essentials. This is by no means
an exhaustive examination of Pascal; there are many fine books for this purpose.
Instead, we try to bootstrap our way into enough knowledge so the experienced
programmer can read and possibly write simple Pascal code. Specifically, we look
at four simple computer programs to get a feel for Pascal’s data structures and
algorithmic devices. We also examine a set of portable routines for generating
random numbers.

SIMPLE1: AN EXTREMELY SIMPLE CODE

Let's dive right in and take a look at a very simple Pascal code called simplel,
shown in Fig. B.1. This program prints out a two line message:

Bullwinkle is a dope
No Rocky, not that message

328

Appendix B / Pascal for Fortran, Basic, and Cobol Programmers

program simplel;

[simplel: print out a message)

begin

writeln(' Bullwinkle is a dope ');
writeln(’ No Rocky, not that message ')
end,

FIGURE B.1 Pascal program simplel.

To do this simple (but admittedly not very purposeful) task, very little parapher-
nalia is required, as you can see from the code. The program starts out with the
identifier program followed by the name of the program, which in this case is
simplel. We separate this line of the code from the other lines with the Pascal
line separator symbol, the semicolon (;). In Pascal the semicolon is not an end-
of-line marker as in PL/1 or other languages,; it is only required in locations where
division is syntactically necessary.

Following the program header we have placed a comment to remind us what
this piece of code does. In Pascal, comments are enclosed in brackets ({this is a
valid Pascal comment}) and good programming practice dictates that we sprinkle
them liberally throughout the code as signposts for others or as reminders to
ourselves when we return to the code after a long interval of inattention.

The code actually starts following the comment. In Pascal, a program begins
with the begin identifier and ends (cleverly enough) with the end. identifier. We
can also form compound statements in Pascal that begin with begin and end with
end, but in those cases the end is slightly less emphatic, requiring no period as
we do in the program begin-end. pair.

At long last we get to some code that does something. The action of simplel
is to write out the two-line message. We do this using the built-in output proce-
dure writeln. In our example, the first line

writeln(' Bullwinkle is a dope');

writes out the message enclosed berween the single quotes to the console and
sends a line feed. There is a companion built-in routine called write that prints
out messages without the line feed.

The second message follows the first, but notice the one important differ-
ence: no semicolon is necessary. This illustrates the use of the semicolon as a
separator instead of as an end-of-line marker. Since the begin-end. pair expects a
line or sequence of lines anyway, a semicolon at the end is redundant. In this
case, an extra semicolon would not harm anything; the compiler would just think
there is a single null line at the end of the program. In other contexts extra or
missing semicolons are a leading cause of serious syntax errors.

With our simplel program written, let’s compile it and run it. All the exam-
ples in this appendix (and all the code in this book for that matter) have been
compiled and executed using the popular Borland International (1985) compiler
Turbo Pascal. To run the compiler, we type turbo <cr> (here <cr> means we
hit a carriage return key) at the system prompt. The Turbo Pascal menu appears

TURBO Pascal system Version 3.01A 329

PC-DOS

Copyright (C) 1983,84,85 BORLAND Inmc.

Color display BOx25

Include error messages (Y/N)7

Logged drive: C
Active directory: \TURBO

Work file:

Main file:

Edit Compile PRum Save
Dir Quit compiler Options
Text: 0 bytes

Free: 62024 bytes

>

FIGURE B.2 Turbo Pascal Menu. Used with permission of Borland Interna-
tional, Inc.

as shown in Fig. B.2. We type ¢ or C to invoke the compiler, we give the file name
at the file name prompt, and we get the clean compilation message shown in Fig,
B.3. To run the code we type r or R (run) and the two-line message is printed as
we planned (Fig. B.3).

That was easy enough, but frankly we haven't done too much. We have no-
ticed some differences between Pascal and other programming languages like
Basic and Fortran: the use of begin-end, a comment format with brackets, and a

Loading A:\SIMPLEL.APB

Compiling

6 lines
Code: 0008 paragraphs (128 bytes), 0D20 paragraphs free
Data: 0002 paragraphs (32 bytes), OFDA paragraphs free
Stack/Heap: B6F4 paragraphs (552768 bytes)
>
Running

Bullwinkle is a dope
No Rocky, not that message

>

FIGURE B.3 Compilation and run of program simplel. Used with permission
of Borland International, Inc.

330

Appendix B / Pascal for Fortran, Basic, and Cobol Proagrammers

simple built-in output routine. The next example examines a more involved sim-
ple program called simple2.

SIMPLE2: FUNCTIONS, PROCEDURES, AND MORE 1/0

The second illustration stays with simple input-output examples but introduces
the idea of writing more modular programs. In the previous program, we wrote
a single piece of code from start to finish. This is satisfactory for small programs,
but in most programming work we need to segment the code into separate mod-
ules to permit program maintenance and module reuse. A more modular program
is shown in Fig. B.4 as simple2. Scanning the code, we see some familiar com-
ponents from our last foray: the begin-end. pair, the program statement, and the
bracketed comments ({ }). We also see some new elements: the declarations at
the top of the code and the evidence of substructure in a function readnumber
and a procedure writemessage.

Below the program header and comment we have two different types of dec-
laration sections. At the const identifier we declare a single variable called pr that
contains the value of 7 to eight decimal places. Other constants could have been
declared (separated by semicolons) until the next declaration section, the var or
variable declaration section. In the variable declaration, a single integer-valued
variable 7 is declared. Again, other variables could have been declared using the
standard types: integer, real, boolean (true, false), char (character).

Following the declaration sections, two code modules are defined. The first
is a function module called readnumber. This function prints a prompt message
at the console, reads an integer from the console, and returns the value of the
integer to the calling module. In the function header, we note that this function
has no calling sequence, as no arguments are required for its operation. Following
the header, and following the informative comment between brackets, a local var
declaration declares the single local variable j as an integer. Following the dec-
laration, the function begins with a begin and the functional code starts. A write
statement writes out the prompt message

Enter number >

to the console, but because write is used instead of wrifteln, no line feed is issued.
Thereafter the statement readin(j) reads the variable j from the console and is-
sues the next line feed. The built-in procedure readin has a companion procedure
read that does not (like write) issue the line feed. Following the prompt and
read, the function returns its value with the assignment statement:

readnumber := j;

In Pascal, the assignment operator is denoted by the symbol :=. The equal sign
(=) by itself is reserved for tests of logical equality and constant definition. The
function is ended by the end identifier.

Simple2: Functions, Procedures, and More I/O 331

program simple2;
| simple2: a program to read a number and print a message)

const pi = 3,14159265;
var i:integer;

function readnumber:integer;
| Read a number from the console)
var j:integer;
begin
write('Enter number > ');readln(j);
readnumber := j
end;

procedure writemessage(var out:text; number:integer);
[Write a message w/ number to a specified output device)

begin

writeln(out);

writeln{out,’ The number is ', number);
writeln{out,’' The value of Pi is *, pi)

end;

begin (main program)

i = readnumber; { function call to read number from console |
writemessage(lst,i); | write message to the printer |
writemessage(con,i) | write message to the console)
end. ([main program)

FIGURE B.4 Pascal program simple2.

Following readnumber we see a procedure named writemessage. This rou-
tine has a calling sequence with two elements:

(var out:text; number:integer)

In this way we pass down the name of the output text file (or device) where the
message should be written and we also pass the integer-valued variable number
to be written as part of the message on the specified device. Following the pro-
cedure header and the informative comment, the actual work of writemessage is
contained between the begin-end; pair. We first eject a line with the statement:

writeln(out);

This is a different form of the built-in procedure writeln, where the particular
device (in this case owut) is specified. As there is no message in this case, we issue
the call to writeln here solely for its line feed. The line feed is followed by the
writing of our message, “The number is”, followed by the value of the number
passed down in the variable number in the argument list. This in turn is followed
by a message, “The value of Pi is”, followed by the value of 7 declared originally.
Notice that pi was not passed through the argument list. This illustrates the use

332 Appendix B / Pascal for Fortran, Basic, and Cobol Programmers
Compiling
28 lines
Code : 0012 paragraphs (288 bytes), 0D16 paragraphs free
Data: 0003 paragraphs (48 bytes), OFD9 paragraphs free
Stack/Heap: B6C3 paragraphs (551984 bytes)
>
Running
Enter number > 11
The number is 11
The value of Pi is 3.1415926500E+00
>
FIGURE B.5 Screen dump of program simple2 run.
of a global constant. Pascal also permits the use of global variables where proce-
dures and functions have access to variables in parent routines. While it is tempt-
ing to adopt global variable usage, thereby avoiding the typing of argument lists,
global variable and constant usage should be limited to those variables and con-
stants that are truly used throughout the entire program.

Finally we reach the main program. In rapid succession, we issue a function
call to readnumber and two procedure calls to writemessage. The first writes to
the listing device Ist and the second writes to the console con. These devices are
Turbo Pascal standards, and they may be different in other compilers. We con-
clude the program with the emphatic end statement characteristic of Pascal pro-
gram termination. Figure B.5 displays a screen dump of a run of simple2. In
addition to the screen output, the same output message is directed to the listing
device (the line printer).

LET'S DO SOMETHING

Our first two codes were, to be honest, not very functional. Printing out foolish
messages and reading and writing single numbers are not going to make us fa-
mous programmers, nor are they going to bootstrap us into enough Pascal knowl-
edge to understand or write even the simplest of genetic algorithms (or anything
else for that matter). In our next code, simple3 (shown in Fig. B.6), we do some
coin flipping and keep track of the number of heads and tails that come up.

At the top of the code we define two constants: rcoins, the number of coins,
and probability, the probability of turning up heads. In the variable declarations
we define an array beads_or_tails to keep track of the heads-tails count. This is
accomplished through the defining statement:

heads_or_tails: array [1..2] of integer;

Let's Do Something 333

program simplel;
| simple3: a program to flip 20 coins and keep track of heads and talls)
{ use for-do construct !

const ncoins = 20; { number of coin flips)
probability = 0.5; { probability of heads turning up)

var heads or_talls:array[l..2] of integer; | heads/talls count |
j:integer; [loop counter)
toss :boolean; | toss: true=heads, false=false)

{ Include random number generator and flip routine)
($1 random.apb|

begin (Main program)

heads or_tails(l)] := O; (Counters to zero)
heads or talls[2] := 0;
randomize; | Seed and warm up random number generator |

for j := 1 to ncoins do begin | Celn toss loop)
toss := flip(probability);
if toss then heads or_tails[l] := heads or_tails[l] + 1
else heads_or rails[2] := heads or rails(2] + 1
end; (coin toss loop)
writeln(' In ', ncoins, coin tosses there were ',
heads or tails[l], " heads and ', heads or_tails[2],
' tails')
end. ([Main program)

[]

FIGURE B.6 Pascal program simple3.

This simply defines a two-position array of integers. Other variables defined in
the var section include the integer counter variable j and a coin toss result boo-
lean variable (head = true, tail = false) toss. Following the variable declaration
we include the pseudorandom number routines stored in the file random. apb by
using the compiler directive statement:

{$I random.apb}

Although this looks like a mild-mannered comment, the $ indicates that it should
be interpreted as a compiler directive. The [/ following the dollar sign means that
the named file (in this case random.apb) should be included in the compilation
at this point of the main program file.

We briefly turn our attention to the contents of the file random.apb. This
file contains several global variable definitions and six code modules as we see
in Fig. B.7. These modules and their purposes are described as follows:

advance_random retrieves a new batch of pseudorandom numbers.
warmup_random initializes random number generator.

random returns a single pseudorandom real value berween 0.0
and 1.0.
fip returns result of a simulated biased coin toss (true =

head).

334 Appendix B / Pascal for Fortran, Basic, ond Cobol Programmers

| random,apb: contains random number generator and related utilities
including advance random, warmup_random, random, randomize,

flip, rnd)

| Glebal variables - Don’t use these names in other code |
var oldrand:array[l..55] of real; (Array of 55 random numbers)
jrand:integer; | eurrent random)

procedure advance random;
{ Create next batch of 53 random numbers)
var jl:integer;
new_random:real;
begin
for jl:= 1 to 24 do
begin
new_random := oldrand[jl] - eoldrand[jl+31];
if (new_random < 0.0) then new_random := new random + 1.0;
oldrand[jl] := new_random;
end;
for jl:= 25 to 55 do
begin
new_random := oldrand|[jl] - oldrand|[jl-24];
if (new_random < 0.0) then new random := new random + 1.0;
oldrand|[jl] := new_random;
end;
end;

procedure warmup_random(random_seed:real);
| Get random off and runmin)
var jl,ii:integer;
new_random,prev_random:real;
begin
oldrand[55] := random_seed;
new_random := 1.0e-9;
prev_random := random_seed,
for jl:=1 to 54 do
begin
ii := 21*j1 mod 55;
oldrand[ii] := new_random;
new_random := prev_random - new_random;
if (new_random < 0.0) then new_random:=new random+l.0;
prev_random:=oldrand|ii]
end;
advance_random; advance random; advance_ random;
jrand:=0;
end;

FIGURE B.7 Pseudorandom number utilities in file random.apb.

rid returns an integer selected uniformly and pseudoran-
domly berween upper and lower limits.
randomize queries terminal for user-specified random seed and in-

itializes random.

These routines are based on a portable subtractive pseudorandom number gen-
erator described in Knuth (1981). The code simple3 uses randomize and fTip,

Let's Do Something 335

function random:real;
(Fetch a single random number between 0.0 and 1.0 - Subtractive Method)
| See Knuth, D. (1969), v. 2 for dectalls |
begin

jrand := jrand + 1;

if (jrand > 55) then

begin jrand:=l; advance_random end;

random := oldrand[jrand];
end;

function flip(probability:real):boolean;
(Flip a biased coin - true if heads)
begin

if probability = 1.0 then flip := true
else flip := (random <= probability);
end;

function rnd(low,high:integer):integer;
{ Pick a random integer between low and high |
var il:integer;
begin
if low >= high then 1 := low
else begin
i := trunc(random * (high-low+l) + low);
if 1 > high then i1 := high;
end;
rnd = {;
end;

procedure randomize;
{ Get seed number for random and start it up)
var randomseed:real;
begin
Tepeat
write(’'Enter seed random number (0.0..1.0) > '); readln(randomseed);
until (randomseed>0) and (randomseed<l.0);
warmup random(randomseed);
end;

FIGURE B.7 (Continued)

which in turn use warmup_random, advance_random, and random. The rou-
tine rnd will be demonstrated in the fourth and final program.

Following the inclusion of the pseudorandom number generator parapher-
nalia, we begin simple3 by initializing the beads_or_tails array to zero. The ran-
domize utility is called to set up the pseudorandom number generator. Finally
the 20 coins are tossed in the iterative for-do construct. This is similar to a For-
tran DO loop and a Basic FOR-NEXT loop. In the Pascal construct, the loop
counter is iteratively incremented between the lower limit (1 in this case) and
the upper limit (7coin) while performing the statement following the do (in this
case, a compound statement is found between a begin-end pair). Within the loop
the boolean variable toss is assigned the result of the flip evaluation. The condi-
tional construct, if-then-else is used to increment the heads counter (beads_

336

Appendix B / Pascal for Forfran, Basic, and Cobol Programmers

or_tails[1]) or the tails counter (beads_or_tails[2]) depending on the value of
toss. Finally a message is printed out to the console to report the number of heads
and tails observed. A screen dump of program output is shown in Fig. B.8

There are, of course, many ways to skin a cat. In program simple3a, shown
in Fig. B9, we do the same computation as in program simple3; however, this
time we use a different loop structure, the repeat-until construct. In this minor
variant we initialize the loop counter to zero (j := 0) and iterate until the loop
terminating condition is true. In this case we increment j by one each iteration
and terminate when j equals the constant ncoins (20). Of course, the repeat-
until construct may be used for more complex terminating conditions.

In simple3b (Fig. B.10), we see one more variant on this simple looping
theme. In this case we use a pretest version of the loop structure using the while-
do construct. In this program the loop counter is initialized to zero, and the loop
proceeds only if the pretest condition (in this case, j <= ncoins) is satisfied.
Within the loop the j variable is incremented and the biased coin is tossed as
before.

>
Running
Enter seed random number (0.0..1.0) > 0.1
In 20 coin tosses there were 13 heads and 7 tails

>

Running

Enter seed random number (0.0..1.0) > 0.333

In 20 coin tosses there were 10 heads and 10 tails
>

Running

Enter seed random number (0.0..1.0) > 0.54324444
In 20 coin tosses there were 8 heads and 12 tails

>
Running
Enter seed random number (0.0..1.0) > 0.999%9
In 20 coin tosses there were 9 heads and 11 tails

>

FIGURE B.8 Screen dump of simple3 run.

program simplela;
{ simpleda: a program to flip 20 ecoins and keep track of heads and tails
uses repeat-until construct i

const ncoins = 20; | number of coin flips |
probability = 0.5; ([probability of heads turning up |

var heads_or_tails:array[l..2] of imteger; (heads/talls count |
j:integer; | leop counter |}
toss:boolean; | toss: true=heads, false=false)

{ Include random number generator and flip routine)
(41 random.apb)

begin (Main program)

heads_or_trails[l] := 0; | H/T counters to zero)

heads_or_talls[2] := 0;

randomize; | Seed and warm up random number generator)
j i=0; | Loop counter to zero)

repeat | Coin tess loop |
toss := flip(probability);
if toss then heads or_tails[l] := heads_or_tails[l] + 1
else heads or_rails[2] := heads_or_rtails[2] + 1;
Ji=1+1
until (j = ncoins);
writeln(’' In ', ncoins, " coin tosses there were ',
heads_or_tails[l], ' heads and ', heads_or_tails|2],
' rails’)
end. | Main program)

FIGURE B.9 Pascal program simple3a, variant with repeat-until.

program simplelb;
{ simple3b: a program to flip 20 coins and keep track of heads and tails
uses while-do construct |

const necoins = 20; { number of coin flips)
probability = 0.5; { probability of heads turning up)

var heads or_tails:array[l..2] of integer; [heads/tails count |
j:integer; | loop counter }
toss:boolean; | toss: true=heads, false=false -

| Include random number gemerator and flip routine)
(I random.apb)

begin (Main program)

heads_or_trails[1l] := D; | H/T counters to zero)

heads or tails[2] := 0;

randomize; | Seed and warm up random number generator)
j o:=1; | Loop counter to zero)

while (j<=ncoins) do begin { Coin toss loop)
toss = flip(probabilicy);
if toss then heads_or_tails[l] :- heads_or tails[1l] + 1
else heads_or tails[2] := heads or rails[2] + 1;
ji=3i+1
end; { Coin toss loop)
writeln(’' In ', ncoins, ' coin tosses there were ',
heads _or_tails[l], * heads and ', heads or tails[2],
" talls’®)
end. (Main program)

FIGURE B.10 Pascal program simple3b, variant with while-do.

338

Appendix B / Pascal for Fortran, Basic, and Cobol Programmers

LAST STOP BEFORE FREEWAY

In our last piece of introductory Pascal code, we try to bring together a number
of things in the code simpled as displayed in Fig. B.11. In this program we roll a
simulated pair of dice and keep track of the roll history and accumulated dice-
sum counts.

Following the program header, and following the declaration of a number of
constants, we declare a number of variable types in the type declaration section,
In our previous codes we have not encountered this facility that permits the
construction of our own named variable types. In simpled, for example, we de-
fine a roll as a record containing two die values. A record in Pascal is a data
structure that permits groupings of variables to congregate under a single name.
In this sample code, we also define a data type we call sequence, which is itself
an array of the just-defined roll type variables. Finally we define a type sumcount,
which is an array of integers indexed berween 2 and 12 to store the dice totals
that occur during the rolls.

Type declarations by themselves do no variables make. After the type decla-
rations, we define the acrual data structure instances we use. In the vgr section,
we define the structure play as a sequence type, and we define the structure
fotals as a sumcount type. We also define two integer variables, j, a loop counter,
and sum, a dice sum result.

To segment the program, we define two code modules, the die function and
the throw procedure. The function die simulates the roll of a single die using the
random number utility rnd The procedure fhrow simulates the throw of a pair
of dice by calling die twice, keeping track of the outcomes in a record structure
of type roll, and calculating the sum of the two die faces. The with-do construct
within die allows us to use the record variables without referring repeatedly to
the record name. We can also use Pascal’s dot notation to directly access a record
component. The same code segment could have been written in dot notation as
follows:

begin

rollmemory.diel := die;

rollmemory.die2 := die:;

sum := rollmemory.diel + rollmemory.die2
end;

Clearly, the with-do construct permits easy utilization of record components
without repetitious typing.

In the main program we zero out the dice totals, initialize the random num-
ber generator, and initialize the loop counter j Within the loop we repeatedly
throw the dice and increment the appropriate sum counter. Following the loop
we print out the history of all throws and print out all the sum counts as well.
Further modularization of this program is possible, and in some sense desirable.
For example, we could have modularized the initialization code, the reporting
code, and the main loop. If we had done this, the main program would have

program simpled; 339
{ simple4: a program to roll a pair of dice)

number of dice rolls
minimum dice total

const maxrolls = 36;)
; |

maximum dice total)
)

|

dicemin =

——— — —

dicemax = 12;
diemax = 6; single die max
diemin = 1; single die min

-

type roll = record record of single throw |
diel, die2:integer
end;
sequence = array|[l..maxrolls]) of rell;

sumcount = array|[dicemin..dicemax] of integer;

var play:sequence; { Keep track of play sequence |
totals:sumcount; [Keep tally of totals |
j. sum:integer;

({ Include random number gemerator and utilities)
{$1 random.apb)

function die:integer;
[Rell a single die)
begin die := rnd(diemin, diemax) end;

procedure throw(var sum:integer; var rollmemory:rell);
| Roll & sum a palr of dice)
begin
with rollmemory do begin
diel := die; [Roll the dice)

die? := die;
sum = diel + die2
end
end;

procedure report;
var j:integer;

begin
writeln(' Plays Report ');
writeln{' ------- sesss ') writeln;

for j := 1 te maxrolls do with play[j] do (Print out all plays |
writeln(’ Roll ", §:3, ": die 1= ', diel, ', die 2=',6 die2);
writeln;
writeln(’' Rolls Summary');
writeln(' ==ccececacana '); writeln;
for j := 2 to dicemax do begin | Print out totals |
write('[*, 1:2,'] = ', totals[j]:2, ', ');
if j=7 then writeln

end
end;
begin { Main program |
for j := dicemin to dicemax do totals[j] := 0; | Zero out totals)
randomize; | Setup and seed random number generator)
j =0; { Zere counter)
repeat { Boll & count)
ji=1+1
throw(sum,play([§]); { Throw the dice)
totals[sum] := totals[sum] + 1 { Increment sumth total)
until (j=-maxrells); (Stop at maximum rells)
report { Report all results |}

end. (Main program }

FIGURE B.11 Pascal program simple4.

340

Appendix B / Pascal for Fortran, Basic, and Cobol Programmers

looked something like the following:

begin
initial;

loop:
report

end.

Enter seed random number
Plays Report

Roll
Roll
Roll
Roell
Roll
Roll
Roll
Roll
Roll
Roll
Rell
Roll
Roll
Roll
Roll
Roll
Rell
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Rell
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll

1: die
2: die
3: die
4: die
5: die
6: die
7: die
B: die
9: die
10: die
11: die
12: die
13: die
14: die
15: die
16: die
17: die
18: die
19: die
20: die
21: die
22: die
23: die
24: die
25: die
26: die
27: die
28: die
29: die
30: die
31: die
32: die
33: die
34: die
35: die
36: die

Rolls Summary

1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=
1=

die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die
die

B L LA RS LW LA LA B O O e LN e R P O L R B U0 L B R B e O O RO RS RS O O B e

- = w om om o om o= = om om m = ® =

(0.0..1.0) > 0.1111

2=6
2=2
2=3
2=1
2=3
2=5
2=1
2=3
2=4
2=2
2=1
2=5
2=6
2=4
2=5
2=4
2=1
2=d
2=6
2=2
2=1
2=3
2=3
2=2
2=5
2=3
2=5
2=3
2=3
2=2
2=5
2=1
2=2
2=5
2=4
2=3

b, | 4] =
5, [10] -

1, [5] =
3, [11] =

5
1

FIGURE B.12 Screen dump of simple4 run.

Summary 34

This extreme modularization is less necessary in small codes like simpled; how-
ever, in large, complex programs, modularization is important for efficient coding,
debugging, and maintenance. A screen dump of a simpled run is shown in Fig,
B.12, It is an interesting exercise to compare the actual and expected dice sum

counts,

SUMMARY

This appendix illustrates the essentials of the Pascal programming language
through simple examples. We have examined very simple programs that perform
a little input and output, and we have seen more complex programs with code
modules and more involved data structures. This brief tour is necessarily incom-
plete, but it should permit perusal of the genetic algorithm codes in this book,

A Simple Genetic
Algorithm (SGA) in Pascal

The complete Pascal code for the simple genetic algorithm (SGA) is presented in
Figures C.1-C.8. The code is segmented into nine files:

sgapas SGA main program
interfac.sga problem and problem interface routines
stats.sga population statistics routines
initiglsga initialization routines
report.sga population reporting routines
triops.sga reproduction, crossover, and mutation
generatesga generation coordinator
utility.sga input-output and computation utilities
randonm.apb portable random number generator (See Appendix B,)

All input for the program is entered interactively, and all program output is sent
to the standard Turbo Pascal listing device Ist.

program sga;

[A Simple Genetic Algorithm - SGA - v1.0)
| (¢) David Edward Goldberg 1986 !
{ All Rights Reserved 1

const maxpop - 100;
maxstring = 30;

type allele = boolean; | Allele = bit position)
chromosome = array[l..maxstring] of allele; (String of bits |

FIGURE C.1 SGA main program in file sga.pas.

344

individual = record
chrom:chromosome; | Genotype = bit string |

x:real; | Phenotype = unsigned integer)

fitness:real; [Objective function value |

parentl, parent2, xsite:integer; (parents & cross pt)
end;

population = array[l..maxpop] of individual;

var oldpop, newpop:population; | Two non-overlapping populations)
popsize, lehrom, gen, maxgen:integer; ([Integer global variables)
pcross, pmutation, sumfitness:real; ({ Real global variables |
nmutation, ncross:integer,; { Integer statistics)
avg, max, min:real; [Real statiscies)

| Include utility procedures and functions }
[$1 urilicy.sga |

{ Include pseudo-random number generator and random utilities |}
($I random.apb |

[Include interface routines: decode and objfunc)
{$1 interfac.sga |

{ Include statistics calculations: statistics)
($1 stats.sga)

{ Include init. routines: inirialize, initdata, initpop, initreport }
{51 initial.sga |

[Include report routines: report, writechrom |}
($1 report.sga)

{ Include the 3 operators: select (reproduction), crossover, mutation }
($I triops.sga |

{ Include new population generation routine: generation }
{$I generate.sga |

begin { Main program |
gen := 0; (Set things up |
initialize;
repeat [Main iterative loop |
gen = gen + 1;
generation;

statistics(popsize, max, avg, min, sumfitmess, newpop);
report(gen),
oldpop := newpop; (advance the gemeration }

until (gen >~ maxgen)

end. { End main program |

FIGURE C.1 (Continued)

[interfac.sga: contains objfunc, decode |
{ Change these for different problem |

function objfunc(x:real):real;

| Fitness function - f(x) = x¥#n }

const coef = 1073741823.0; (Coefficient to nmormalize domain)
n = 10; | Power of x)

begin objfunc := power(x/coef, n) end;

FIGURE C.2 Objective function and problem interface in file interfac.sga.

A Simple Genetic Algorithm (SGA) in Pascal

function decode(chrom:chromosome; lbits:integer):real;
{ Decode string as unsigned binary integer - true=l, false=0)
var j:integer;
accum, powerofl:real;
begin
accum 1= 0,0; powerof? := 1;
for § := 1 to lbits do begin
if chrom|j] then accum := accum + powerofl;
powerof2 := powerof2 * 2;
end;
decode ;= accum;
end;

FIGURE C.2 (Continued)

| stats.sga |

procedure statistics(popsize:integer;
var max,avg,min,sumfitness:real;

var pop:population);
| Calculate population statistics }
wvar j:integer;
begin
| Initialize |}
sumfitness := pop[l].fitness;
min := pop[l].fitness;
max := pop[l].fitness;
| Loop for max, min, sumfitness)
for § := 2 to popsize do with pop(]] do begin
sumfitness := sumfitness + fitness; | Accumulate fitness sum)
if fitness>max then max := fitness; { New max |
if fitness<min then min := fitness; | New min]
end;
| Calculate average |
avg := sumfictness/popsize;
end;

FIGURE C.3 Population statistics routines in file stats.sga.

[initial.sga: contains initdata, initpop, initreport, imitialize)

procedure initdata;
| Interactive data inquiry and setup |
var ch:char; j:integer;

begin

rewrite(lst); [Set up for list device)

clrser; | Clear screen |

skip(con,9);

repchar(con,’ ', 23); writeln('-------cccccccnmuncncnnnnnnnnn-- L

repchar(con,' *,25); writeln('A Simple Genetic Algorithm - SGA');
repchar(con,’ *,25); writeln(’ (c) David Edward Goldberg 1986');
repchar(con,' *,25); writeln(’ All Rights Reserved L -
repchar(con,' *,25); writeln('~------==-v--eeemecoecccraccaaanan b
pause(7); clrser;
writeln(’*kddkdk® SCA Data Entry and Initialization #dddddntddnkdk!’) .
writeln;

write('Enter population size ------- > '); readln(popsize);

FIGURE C.4 Initialization routines in file initial.sga.

346

write('Enter chromosome length ----- > '); readln(lchrom);
write('Enter max. generations ------ > '); readln(maxgen);
write('Enter crossover probability - > '); readln{pcross);
write('Enter mutation probabiliey -- > '); readln(pmutation);
pause(5); clrscr;
| Initialize random number generator |
randomize;
pause(2); clrser;
| Initialize counters)
nmutacion := 0;
neross = 0;
end;
procedure initreport;
{ Initial report)
begin
WELlteln(lat, 'sesesrecccnscsncanscsnnnsannansnnanssnsnnnnnnnnannasl)?
writeln(lsc, | A Simple Gemetic Algorithm - SGA - v1.0 1"
writeln(lst, | (c) David Edward Goldberg 1986 1'):
writeln(lsc,"'| All Rights Reserved H
writeln(lst, fecccccense B sessccscccaasancannneal))
skip(lst,5);
writeln(lst, ' SGA Parameters');
writeln(lsct, ' LT TR
writeln(lst);
writeln(lsc, ' Population size (popsize) - ', popsize);
writeln(lst," Chromosome length (lchrom) - " lchrom);
writeln(lst, ' Maximum # of generation (maxgen) - ! ,maxgen);
writeln(lst, ' Crossover probability (pcross) = ! pcroas);

writeln(lst,’ Mutation probability (pmutation) = ' pmutation);
skip(lst, 8);

writeln(lsct, ' Initial Generation Statistics’);

vwriteln{lst,’ = =ecccccccscccnccncrenennnnnes i I

writeln(lst);

writeln(lst,’ Initial population maximum fitness = ' max);
writeln(lsc, ' Initial population average fitness = ',avg);
writeln(lst,"’ Initial population minimum fitness = ', min);
writeln(lst,’ Initial population sum of fitness = ', sumfltness);
page(lst); | New page)
end;

procedure initpop;

| Initialize a population at random }

var j, jl:integer;

begin

for | := 1 to popsize do with oldpop[j] do begin
for jl := 1 to lchrom do chrom[jl] := £11p(0.5); (A fair coin toss)
¥ := decode(chrom,lchrom); [Decode the string |
fitness := objfunc(x); [Evaluate inital fitness)
parentl := 0; parent? := 0; xsite := 0; [Initialize printout vars |
end;

end,

procedure initialize;
{ Initialization Coordinator |
begin
initdata;
initcpop;
statistics(popsize, max, avg, min, sumfitness, oldpop);
initreport;
end;

FIGURE C.4 (Continued)

{ report,sga: contains writechrom, report) 347

procedure writechrom(var out:text; chrom:chromosome, lchrom:integer);
[Write a chromosome as a string of 1's (true’'s) and 0's (false's) |
var j:integer;
begin
for | := lchrom downto 1 do
if chrom[j] then write{out,'l’)
else wricte(out,'0');
end;

procedure report(gen:integer);

{ Write the population report |

const linelength = 132;

var j:integer;

begin

repchar(lst,’-",linelengch); writeln(lsc);

repchar(lst,’ ' ,50); writeln(lsct, 'Population Report');
repchar(lst,’ ',23); write(lst,'Generation ',gen-1:2);
repchar(lst,’ " ,57); writeln(lst, 'Generation ', gen:2);
writeln(lsc);

write(lst,' # string *® fitness');
write(lst,"’ # parents xsite');
writeln(lst, r string x fitness');

repchar(lst,’ -’ linelength); writeln(lst);
for j := 1 to popsize do begin
write(lst,§:2, ") ');
| 01d string |
with eldpep[j] do begin
writechrom(lst,chrom, lchrom);
write(lsc,’ *, x:10, ' ', fitness:6:4, ' 1'3;
end;
| New string)
with newpop[j] do begin
write(lsc,"’ ', §:2, ') (', parentl:2, *,', parent2:2, ') ',
xsite:2,' Jh I
writechrom(lst,chrom, lchrom);
writeln(lsc, * ' ,x:10," ', fitness:6:4);
end;
end;
repchar(lst,’'-" ,1linelength); writeln(lsc);
| Generation statistics and accumulated values)
writeln(lst,’' Note: Generation ', gen:2, ' & Accumulated Statistics: '
,! max=', max:6:4,', min=',6 min:6:4, ', avg=', avg:6:4, ', sum=
,sumfitness:6:4, ', nmutation=', nmutation, ', ncross= ', nNcross);
repchar(lst,’-' ,linelength); writeln(lst);
page(lst);
end;

'

FIGURE C.5 Reporting routines in file report.sga.

| triops.sga)
| 3-operators: Reproduction (select), Crossover (crossover),
& Mutation (mutation) }

function select(popsize:integer; sumfitness:real;
var pop:population):integer;
{ Select a single individual via roulette wheel selection)
var rand, partsum:real; { Random point on wheel, partial sum)
j:integer; | population index |}

FIGURE C.6 Genetic operators in file triops.sga.

348

begin
partsum := 0.0; j := O0; | Zero out counter and accumulator |
rand := random * sumfitness; | Wheel point cale. uses random number [0,1] |
repeat | Find wheel slot)
Ji=3+1;
partsum := partsum + pop[j].fitness;
until (partsum >= rand) or (j = popsize);
(Return individual number)
select := §;
end;

function mutation(alleleval:allele; pmutation:real;
var nmutation:integer):allele;
{ Mutate an allele w/ pmutation, count number of mutations)
var mutate:boolean;
begin
mutate := flip(pmutation); { Flip the biased coin)
if mutate then begin
mmutation := mmutation + 1;
mutation := not alleleval; | Change bit value |
end else
mutation := alleleval; { No change)
end;

procedure crossover(var parentl, parent2, childl, child2:chromosome;
var lchrom, ncross, mmutation, jecross:integer,
var pcross, pmutatiom:real);

(Cross 2 parent strings, place in 2 child strings)

var j:integer;

begin
if flip(pcross) then begin | Do crossover with p(cross))
jeross := rnd(l,lchrom-1); | Cross between 1 and 1-1)
NCross = ncross + 1; | Increment crossover counter }
end else | Otherwise set cross site to force mutation

!
jJeress := lchrom;
| lst exchange, 1 to 1 and 2 to 2)
for § := 1 to jeross do begin
childl[j] := mutation{parentl(j], pmutation, nmutation);
child2[j] := mutation{parent2([j], pmutation, nmutation);
end;
{ 2nd exchanga, 1 to 2 and 2 to 1]
if jeross<lchrom then | Skip 1f cross site is lchrom--ne crossover |
for § := jcross+l to lchrom do begin
childl(j] := mutation(paremnt2[j], pmutation, mmutation);
child2({]] := mutation(parentl[j], pmutation, nmutation);
end;
end;

FIGURE C.6 (Continued)

| generate.sga)

procedure generation;
| Create a new generation through select, crossover, and mutatiom }

| Note: generation assumes an even-numbered popsize]
var j, matel, mate?, jeross:integer;
begin

=1

repeat | select, crossover, and mutation until newpop is filled)

matel := select(popsize, sumfitness, oldpop); | pick pair of mates)

FIGURE C.7 Generation coordinator in file generate.sga.

A Simple Genetic Algorithm (SGA) in Pascal

mate? := select{popsize, sumfitness, oldpop);
{ Crossover and mutation - mutation embedded within crossover)
crossover(oldpop[matel].chrom, oldpop[matel].chrom,
newpop| }] .chrom, newpop(j + 1].chrom,
lchrom, ncross, mmutation, jcross, pcross, pmutation);
| Decode string, evaluate fitness, & record parentage date on both childr
en)
with newpop(j | do begin
% := decode(chrom, lchrom);
fitness := objfunc(x);
parentl := matel;
parent? := matel;
xsite = jcross;
end;
with newpop[j+l] do begin
x ;= decode({chrom, lchrom);
fitness := objfunc(x);
parentl := matel;
parent? := matel;
xsite := jcross;
end;
{ Increment population index)
Ji=3+2;
until j>popsize
end;

FIGURE C.7 (Continued)

{ urility.sga: contains pause, page, repchar, skip, power |

procedure pause(pauselength:integer);

{ Pause a while)
const maxpause = 2500;
var j,jl:integer;

x:real;

begin

for § := 1 to pauselength do
for jl := 1 to maxpause do x := 0.0 + 1.0;
end;

procedure page(var out:text);
| Issue form feed to device or file |}
begin write(out,chr(12)) end;

procedure repchar(var out:text; ch:char; repcount:integer);
{ Repeatedly write a character te an output device |

var j:integer;

begin for j := 1 to repcount do write(out,ch) end;

procedure skip(var out:text; skipcount:integer);

[Skip skipcount lines on device out)

var j:integer;

begin for j := 1 to skipcount do writeln(out) end;

function power(x,y:real):real;

| Raise x to the yth power |
begin power := exp({ y*ln(x)) end;

FIGURE C.8 Input-output and computation utilities in file utility.sga.

349

A Simple Classifier System
(SCS) in Pascal

The complete Pascal code for the simple classifier system (SCS) is presented in
this appendix. The code is segmented into 15 files:

SCs. pas
declare.scs
initial scs
detector.scs
report.scs
timekeep.scs
Environ.scs
perform.scs
aoc.scs
effectorscs
reinforcscs
advance. scs
gascs

utility scs
i0.5Cs

SCS main program

global variable declarations
initialization routines
environmental-to-classifier detectors
classifier system reporting

time coordination routines
6-multiplexer environment
performance (rule and message) system
apportionment of credit routines
classifier-to-environment effectors
reinforcement routines

iteration update routines

genetic algorithm including reproduction, crossover, muta-
tion, and modified crowding
computational utilities

input and output utilities

These files are presented in Figs. D.1-D.15. The SCS code also requires the pseu-
dorandom number routines (file random.apb) presented in Appendix B.
During initialization, the user is queried for the names of five input files:

cfile classifier data
efile environmental data
rfile reinforcement data

352 Appendix D / A Simple Classifier System (SCS) in Pascal

tfile timekeeping data
gfile genetic algorithm data

Annotated input files are presented in Fig. D.16-D.22. In addition, the user
is queried for the names of two output file (or device) names:

rep reporting file or device
pfile plotting file or device

program scs;

| 5C8 - A Simple Classifier System)
| (C) David E. Goldberg, 1987)
l All Rights Reserved |

|51 declare.scs)
[$1 random.aphb |
IS fo.s5¢cs)

($] utilicy.ses)
[§] environ.scs)
{$] detector.scs |
{$1 perform.scs)
|51 aoc.scs)

{51 effector.secs |
|$1 reinforc.scs)
|51 timekeep.scs)
|$1 advance.scs |
|51 ga.scs |

|$I report.scs |}
{51 initial.scs)

begin { main)
initialization;
detectors(environrec, detectrec, envmessage);
report(rep),;
with timekeeprec do repeat
timekeeper(timekeeprec);
environment (environrec);
detectors(environrec, detectrec, envmessage),
matchclassifiers(population, envmessage, matchlist);
aoc(population, matchlist, clearingrec);
effector(population, clearingrec, environrec);
reinforcement(reinforcementrec, population, clearimgrec, environrec);
if reportflag then report(rep);
if consolereportflag then consolereport{reinforcementrec);
if plotreportflag then plotreport(pfile, reinforcementrec);
advance(clearingrec);
if gaflag then begin
ga(garec, population);
if reportflag then reportga(rep, garec, population);
end;
until halt;
report(rep); | final report |}
close(pfile); [close plot file)
end.

FIGURE D.1 The main SCS program is file scs.pas.

A Simple Classifier System (SCS) in Pascal 353

Printed reports are sent to the rep device and summary statistics are printed to
the plotting file.

| declare.scs: declaractions for scs |

const maxposition = 50;
maxclass = 100;
wildeard = -]

type bit = 0..1; { a binary digit)
trit = -1..1; | a cernary digic; 0=0; 1=1; -1l=#)
action bit; |(a binaray decision)

condition array|l. .maxposition] of trit;
message = array|l. .maxposition] of birt;
classtype = record
c:condition;
araction;
strength, bid, ebid:real;
matchflag:boolean;
specificity:integer;
end;
classarray = array[l..maxclass] of classtype;
classlist = record
clist:array[l..maxclass] of integer;
nactive:integer
end;
poptypse = record
classifier:classarray;
nclassifier, nposition:integer;
pgeneral, cbid, bidsigma, bidrax, lifetax,
bidl, bid2, ebidl, abid2,
sumstrength, maxstrength, avgstrength, minstrength:real
end;

var population:poptype; | population of classifiers |
matchlist:classlist; (who matched |}

envmessage :message; [environmental message |
rep:text; | report device/file }

FIGURE D.2 The global variable declarations are in declare.scs.

| initial.scs: initialization coordinatiom |

procedure initrepheader(var rep:text);
[write a header to specified file/dev. |

begin
writeln(rep, 'Wmmmm*mnwﬂ*wmr) -
writeln(rep,’ A Simple Classifier System - SCS');
writeln(rep,* (C) David E. Goldberg, 1987');
writeln(rep,’ All Rights Reserved');

writeln(rep, T bk ko ko k kkok kkokok) 2
writeln(rep); writeln(rep);
end;

FIGURE D.3 Initialization routines are in initial.scs.

354 procedure interactiveheader;
| elear screen and print interactive header)
begin
clrsecr;
initrepheader(con)
end;

procedure inicialization;
| coordinate input and initialization }
begin
interactiveheader;
| random number & normal inmit.)
randomize; initrandomnormaldeviate;
| file/device inic.)

open_input(cfile, interactive, classifier ', fn);
open_input(efile, interactive, environment ', fn);
open_input(rfile, interactive, reinforcement ', fn);

"
open_input(tfile, interactive, ' timekeeper ', fa):

open_input(gfile, interactive, 'gen. algorithm ', fn);
open_output{ rep, interactive, report r, fn);
open_output{pfile, interactive, plot file ', fn);

{ segment initialization: class., obj., det., moc, reinf., timekeep., ga |
initrepheader(rep);
initclassifiers(cfile, populatcion);
initrepclassifiers(rep, population);
initenvironment(efile, environrec);
initrepenvironment(rep, environmrec);
initdetectors(efile, detectrec);
initrepdetectors(rep, detectrec);
initaoc(clearingrec);
initrepaoc(rep, clearingrec);
initreinforcement(rfile, reinforcementrec);
initrepreinforcement(rep, reinforcementrec);
inittimekeeper(tfile, timekeeprec);
initreptimekeeper(rep, timekeeprec);
inicga(gfile, garec, population);
initrepga(rep, garec),;

end;

FIGURE D.3 (Continued)

[detector.scs: convert environmental states to env. message |
| derector data declarations)

type drecord = record
end; (| For this problem, mo detector record is
required. Normally, the detector record
contains information for mapping environmental
state variables to the environmental bit-secring.)

var detectrec:drecord; [dummy detector record |

procedure detectors(var environrec:erecord; var detectrec:drecord;
VAT eNVEmESSage:message),

| convert environmental state to env. message |

begin

with environrec do | place signal message in env. message |

envmessage = signal

end;

FIGURE D.4 Detector routines are in defector.scs.

A Simple Classifier System (SCS) in Pascal 355

procedure writemessage(var rep:text, var mess:message; lmessage:integer),;
{ write a message in bit-reverse order |
var j:integer;
begin
for j := lmessage downto 1 do
write(rep,mess(]]:1)
end;

procedure reportdetectors(var rep:text; VAr envmessage: message;
nposition:integer),;
| write out environmental message |
begin
writeln(rep);
write(rep, "Environmental message: Ll
writemessage(rep, envmessage, nposition);
writeln(rep);
end;

procedure initdetectors(var efile:text; var detectrec:drecord);
| dummy detector initialization)
begin end;

procedure initrepdetectors(var rep:text; wvar detectrec:drecord);
| dummy initial detectors report |
begin end;

FIGURE D.4 (Continued)

| report.scs: report coordinatiom routines }

{ report declarations |
var pflle:text; (plot file)

procedure reportheader(var rep:text);
{ send report header to specified file/dev. |
begin
page(rep);
writeln(rep, 'Snapshot Report');
writeln(rep, "-=---==-==-=---");:
writeln(rep);
end;

procedure report(var rep:text);

{ report coordination routine |

begin
reportheader (rep);
reporttime(rep, timekeeprec);
reportenvironment (rep, environrec);
reportdetectors(rep, envmessage, population.nposition);
reportclassifiers(rep, populaticn);
reportaoc(rep, clearingrec);
reportreinforcement(rep, reinforcementrec);

end;

procedure consolereport(var reinforcementrec:rrecord);
| write console report)

FIGURE D.5 Report coordinator and other reporting routines are in report.scs.

356 begin with reinforcementrec do begin
elrscr; [clear the screen)

writeln(|------ R 1');
writeln("’ Iteracion = ‘', totalcountc:8:0);
writeln(’ P correct = ' proportiomreward:8:6);
writeln(' P50 correct = ' proportionreward50:8:6);
writeln(’ |-~-cecccccnrrnnnceccnnncanns 1°);

end end;

procedure plotreport(var pfile:text; var reinforcementrec:rrecord);
(write plor report to pfile)
begin with reinforcementrec do begin
writeln(pfile, totalcount:8:0,' ', proportionreward:8:6,' ',
proportionreward30:8:6);
end end;

FIGURE D.5 (Continued)

| timekeep.scs: timekeeper routines |

| data declaratioms |
const iterationmsperblock = 10000; (10000 iterations per block |}

type trecord = record | timekeeper record type |
initialiteration, initialblock, iteration, block,
reportperiod, gaperiod, consolereportperied,
plotreportperiod, mexcplotreport, nextconsolereport,
nextreport, nextga:integer;
reportflag, gaflag, consolereportflag, plotreportflag:boolean
end;

var timekeeprec:trecord;
tfile:text;

function addtime(t, dt:integer; var carryflag:boolean):integer;
{ increment iterations counter and set carry flag LIf necessary }
var tempadd:integer;
begin

tempadd = t + dt;

carryflag := (tempadd >= iteratlionsperblock);

if carryflag then

tempadd :- tempadd mod iteratiomsperblock;

addtime := tempadd

end;

procedure inittimekeeper(var tfile:text; var timekeeprec:trecord);
{ initialize timekeeper |
var dummyflag:boolean;
begin with timekeeprec do begin
iteration := 0; block := 0;
readln(cfile, initialiteration);
readln{tfile, initialblock);
readln(tfile, reportperiod);
readln{tfile, consolereportperiod);
readln(tfile, plotreportperiod);
readln(tfile, gaperiod);
iteration := initialiteracion;
block := initialbleck;
nextga := addtime(iteration, gaperiod, dummyflag);
nextreport := addtime(iteration, reportperiod, dummyflag);
nextconsolereport := addtime(iteration, comsolereportperiod, dummyflag);
nextplotreport := addtime(iteration, plotreportperiod, dummyflag);
end end;

FIGURE D.6 Time coordinating routines are in timekeep.scs.

procedure Iinitreptimekeeper(var rep:text; var timekeeprec:ctrecord); 357
{ initial timekeeper report |
begin with timekeeprec do begin

writeln{rep),;
writeln(rep, 'Timekeeper Parameters’);
weiteln({rep, "-=-=rrersnrornnnnnenns b B

initialiteracion:8);
initialblock:8);
reportperiod:8);
consolereportperiod:8);
plotreportperiod:8);
gaperiod:8);

writeln{rep, 'Initial iteration

writeln{rep, 'Initial block

writeln(rep, 'Report period

writeln(rep, 'Conscle report period

writeln{rep, 'Plot report period

writeln(rep, 'Genetic algorithm period
end end;

L I I B I]
- v moweom o=

- = = o= o= o=

procedure timekeeper(var timekeeprec:trecord);
[keep time and set flags for time-driven events)
var carryflag, dummyflag:boolean;
begin with timekeeprec do begin
iteration := addtime(iteration, 1, carryflag);
if carryflag then block := block + 1;
reportflag := (nextreport = iteration);
if reportflag then [reset |
nextreport := addtime(iteration, reportperiod, dummyflag);
consolereportflag := (nextconsolereport = iteration);
if consclereportflag then
nextconsolereport := addtime(iteration, consolereportperiod, dummyflag);
plotreportflag := (nextplotreport = iteratiom);
if plotreportflag then
nextplotreport := addtime(iteration, plotreportperiod, dummyflag);
gaflag := (nextga = iterationm);
if gaflag then nextga := addtime(iteratiom, gaperiod, dummyflag);
end end;

procedure reporttime(var rep:text; var timekaeprec:trecord);

{ print out block and iteration number |

begin with timekeeprec do

writeln(rep, "[Block:Iteration] = [*,block,’:',iteration,’]');
end;

FIGURE D.6 (Continued)

| environ.scs: multiplexer environment |

| environment declarations |
type erecord=-record
laddress, ldata, lsignal, address, output,
classifieroutput:integer;
signal :message;
end;

var environrec:erecord;
efile:text;

procedure generatesignal (var environrec:erecord),;
| generate random signal]
var j:integer;
begin with environrec do

for j := 1 to lsignal de

if flip(0.5) then signal[j] :=1

else signal[j] := 0
end;

FIGURE D.7 The 6-multiplexer routines are in environ.scs.

358 function decode(var mess:message; starct, lengrh:integer):integer;
{ decode substring as unsigned binary integer |
var j, accum, powerofl:integer;
begin

accum (= 0; powerof2 := 1;
for § := start to start+length-l do begin
accum := accum + powerofl*mess[j];
powerof2 := powerof2 * 2;
end;
decode = accum
end;

procedure multiplexeroutput(var environrec:erecord);
| calculate correct multiplexer output |
var j:integer;
begin with envirenrec do begin
| decode the address |
address := decode(signal,l, laddress);
| set the output |
output := signal|laddress + address + 1)
end end;

procedure environment(var environrec:erecord);
| coordinate multiplexer calculations)
begin
generatesignal (environrec);
multiplexeroutpur(environrec);
end;

procedure initenvironment({var efile:text; var environrec:erecord);
| initialize the multiplexer environement)
var j:integer;
begin with environrec do begin
readln(efile, laddress);

1ldata := round(poweri(2.0, laddress));
lsignal := laddress + ldata;

address := 0;

output = 0;

classifieroutput :=- 0;

for j := 1 to lsignal do signal[j] := O;
end end;

read number of address lines }
calculate number of data lines)
caleculate length of signal |
zero out multiplexer)

——— —

procedure initrepenvironment(var rep:text; var environrec:erecord);
[write initial enviromnmental report)
begin with envirenrec do begin

writeln(rep);
writeln{rep, 'Environmental Parameters (Multiplexer)');
writeln{rep, "=-cccvmmmmii el g0 3

', laddress:B);
', ldata:8);
', lsignal:8),;

writeln(rep, 'Number of address lines =

writeln(rep, 'Number of data lines

writeln(rep, 'Total number of lines
end end;

procedure writesignal(var rep:text; var signal:message; lsignal:integer),
| write a signal in bit-reverse order |}
var j:integer;
begin
for j := lsignal downto 1 do
write(rep,signal{j]:1)
end;

FIGURE D.7 (Continued)

A Simple Classifier System (SCS) in Pascal 359

procedure reportenvironment(var rep:text; var environrec:erecord);
| write current multiplexer info)
begin with environrec do begin

writeln(rep);
vriteln(rep, 'Current Multiplexer Status');
vriteln(rep,’'-==-=-=rrerrecsnrcancennss i
write(rep,'Signal - s X
writesignal(rep,signal, lsignal); writeln(rep);
writeln(rep,'Decoded address - ' address:B8);
writeln(rep, 'Mulciplexer output = ' outpuc:8);
writeln(rep,'Classifier output = ' classifieroutput:8);
end end;

FIGURE D.7 (Continued)

| perform.scs: performance system - classifier matching |

| performance declarations - most are in declare.scs)
var cfile:text; | classifier file)

function randomchar(pgeneral:real):integer;
[set position at random with specified generality probabilicy |
begin
if flip(pgeneral) then randomchar := wildcard
else if flip(0.5) then randomchar := 1
else randomchar := 0
end;

procedure readcondition(var cfile:text; wvar c:condition;
var pgeneral:real; var nposition:integer):;
| read a single condition |
var ch:char; j:integer;
begin
for j := nposition downte 1 do begin
read(cfile, ch);
case ch of
‘0 :eld] = 0;
'1':el]j] = 1;
'#':c[]] := wildcard;
'R':c[j] := randomchar(pgeneral);
end
end
end;

procedure readclassifier(var cfile:text; var class:classtype;
pgeneral:real; nposition:integer);

{ read a single classifier |

var ch:char;

begin with class do begin
readcondition(cfile, ¢, pgeneral, nposition); [read condtion |
read(cfile,ch); [read ":" & ignore |
read(cfile, a); { read action, a single trit }
readln(cfile, strength); [read strength |
bid := 0.0; ebid := 0.0; matchflag :- false [initializatiomn)

end end;

FIGURE D.8 The rule and message routines are in perform.scs.

360 function countspecificity(var c:condition; nposition:integer):integer;

{ count condition specificity |
var temp:integer;
begin

temp := 0;

while nposition >= 1 do begin

if c¢[nposition] < wildcard then temp := temp + 1;
nposition := npesition - 1;

end;

countspacificity := temp;
end;

procedure initclassifiers(var cfile:text; var population:poptype);
| initialize classifiers |
var j:integer;
begin with population do begin
readln(ecfile nposicion);
readln(cfile nclassifier);
readln{cfile, pgeneral);
readln({cfile, cbid);
readln(cfile bidsigma);
readln(cfile bidrax);
readln{cfile, lifetax);
readln(cfile bidl);
readln(cfile, bid2);
readln(cfile,ebidl);
readln(cfile, ebid2);
for § := 1 to nclassifier do begin
readclassifier(cfile, classifier[j], pgeneral, nposition);
with classifier(j] do specificity := countspecificity(ec, nposition);
end;
end end;

procedure initrepclassifiers(var rep:text; var population:poptype);
{ Initial report on population parameters |
begin with population do begin

writeln(rep);
writeln(rep,'Population Parameters');
writeln(rep,’-=-~--=-- s -

writeln(rep, 'Rumber of classifiers
writeln(rep, 'Number of positions
writeln(rep, 'Bid coefficient
writeln(rep,'Bid spread
writeln(rep, 'Bidding tax
writeln(rep, 'Existence tax
writeln(rep, 'Generality probability
writeln{rep, ‘Bid specificity base
writeln(rep, "Bid specificity mule.
writeln(rep, 'Ebid specificity base
writeln(rep, 'Ebid specificity mult.
end end;

* nclassifier:8);
' nposition:8);
' ,cbid:B:4);

' ,bidsigma:8:4);
‘ bidtax:8:4);

' lifetax:8:4);
' ,pgeneral:8:4);
‘L bidl:B:4);

¢, bid2:8:4);
*.ebidl:B:4);
*,ebid2:8:4);

]

procedure writecondition(var rep:text; var c:condition; nposition:integer);
[convert internal condition format to external format and write to file/dev.)
var j:integer;
begin
for j := nposition downto 1 do
case c[j] of
1: write(rep,'1l');
0: write(rep,'0');
wildcard: write(rep, '#');
end
end;

FIGURED.8 (Continued)

procedure writeclassifier(var rep:text; class:classcype; 361
number ,nposition:integer);
[write a single classifier)
begin with class do begin
write(rep, number:5,' ' ,strength:8:2,' ' bid:8:2," ", ebid:8:2);
if matchflag then write(rep,’ X ') else write(rep,’ ");
writecondition(rep, ¢, nposition);
writeln(rep,’:','[(',a,']")
end end;

procedure reportclassifiers(var rep:text; var population:peptype);
| generate classifiers report |
var j:integer;
begin with population do begin

writeln(rep);

writeln(rep, 'No. Strength bid ebid M Classifier ');
writeln(rep,’-==scvssccnccacs sasssassanna ssssssssssannss e 3
writeln(rep);

for j := 1 to nclassifier do

writeclassifier(rep, classifier(j], j. nposition);

end end;

function match(var c:condition; var m:message; nposition:integer):boolean;
| match a single condition to & single message |
var matchtemp:boolean;
begin
matchtemp := true;
while (matchtemp = true) and (npositien > 0) do begin
matchtemp := (c[nposition] = wildcard) or (c[nposition] = m[nposition]);
nposition := nposition - 1
end;
match := matchtemp
end;

procedure matchclassifiers(var population:poptype; var emess:message;
var matchlist:classlist);
| match all classifiers against environmental message and create match list)
var j:integer;
begin with population do with matchlist do begin
nactive := 0;
for § := 1 to nclassifier do with classifier[]] do begin
matchflag := match(c, emess, nposicion);
if matchflag then begin
nactive := nactive + 1;
clist[nactive] := §
end
end;
end end;

FIGURE D.8 (Continued)

| aoc.scs: apportionment of credit routines)

| aoc data declarations - aoc uses cfile for input |
type crecord = record
winner, coldwinner:integer;
bucketbrigadeflag:boolean;
end;

var clearingrec:crecord;

FIGURE D.9 Apportionment of credit routines are in goc.scs.

362

procedure initacc(var clearingrec:crecord);

[initialize clearinghouse record |
var ch:char;
begin with clearingrec do begin

readln(cfile, ch);

bucketbrigadeflag := (ch = 'y'}) or (ch = "Y'},

winner := 1; oldwinner := 1 | 1st classifier picked as lst oldwinner |
end end;

procedure initrepaoc(var rep:text; var clearingrec:crecord);
{ initial report of clearinghouse parameters)
begin with clearingrec do begin

writeln(rep);

writeln(rep, 'Apportionment of Credit Parameters’);

writeln(rep, "~-scccrccnennnmcmrrrnnerrrsnnnann i 1
write(rep, 'Bucket brigade flag - i X

if buckerbrigadeflag then writeln(rep, ' true') else
writeln(rep, "false');
end end;

funetion auction(var population:poptype; var matchlist:classlist;
oldwinner:integer):integer;
[auction among currently matched classifiers - return winner }
var |, k, winner:integer; bidmaximun:real;
begin with population do with matchlist do begin
bidmaximum := 0.0;
winner := oldwinner; |(if no match, oldwinner wins again)
if nactive > 0 then for j := 1 to nactive do begin k := clist[]];
with classifier(k] do begin
bid := cbid * (bidl + bid2 * specificity) * strength;
ebid := cbid * (ebidl + ebid2 * specificity) * stremgth
+ noise(0.0, bidsigma);
if (ebid > bidmaximum) then begin
wvinner := k;
bidmaximum := ebid
end
end end;
auction := winner
end end;

procedure clearinghouse(var population:poptype; var clearingrec:crecord);
{ distribute payment from recent winner to oldwinner)
var payment:real;
begin with population do with clearingrec do begin
with classifier|winner] do begin [payment |}
payment := bid;
strength := strenmgth - payment
end;
if bucketbrigadeflag then ([pay oldwinner receipt if bb is on)
with classifier[oldwinner] do stremgth := strength + payment
end end;

procedure taxcellecter(var population:poptype);
{ collect existence and bidding taxes from population members |
var j:integer; bidtaxswitch:real;
begin with population do begin
{ life tax from everyone & bidtax from actives }
if (lifetax < 0.0) or (bidtax < 0.0) then for j := 1 to nclassifier do
with classifier[j] do begin
if matchflag then bidtaxswitch := 1.0 else bidtaxswitch := 0.0;
strength := strength - lifetax#*stremgth - bidtax*bidtaxswitch*strength;
end;
end end;

FIGURE D.9 (Continued)

procedure reportaocc(var rep:text; var clearingrec:crecord);
{ report who pays to whom |
begin
writeln(rep),;
with clearingrec do
writeln{rep, ‘New winner [’ ,winmer,’] : 0ld winner (', oldwinner,']')
end;

procedure aoc(var population:poptype; var matchlist:classlist;
var clearingrec:crecord);
| apportionment of credit coordinator |
begin
with eclearingrec do winner := auction(population, matchlist, eldwinner);
taxcollector(population);
clearinghouse (population, clearingrec);
end;

FIGURE D.9 (Continued)

| effector.scs: effector routime)

procedure effector(var population:poptype; var clearingrec:crecord;
var environrec:erecord);
[set action in object as dictated by auction winner |
begin with population do with clearingrec do with environrec do
classifieroutput := classifier(winner).a end;

FIGURE D.10 Effector routines are in effector.scs.

{ reinforc.scs: reinforcement and criterion procedures }

| reinforcement data declarations |
type rrecord = record [reinforcement record typel
reward, rewardcount, totalcount, count50,
rewvardcount50, proportionreward,
proportionreward50:real;
lastwinner:integer;
end;

var reinforcementrec:rrecord;
rfile: text; | reinforcement file - rfile)

procedure initreinforcement(var rfile:text; var reinforcementrec:rrecord);
| initialize reinforcement parameters |
begin with reinforcementrec do begin

readln(rfile, reward);

rewardcount 1= 0.0;
rewardcount50 = 0.0;
totalcount = 0.0;
count50 = 0.0;
proportionreward := 0.0;
proportionrewards0 := 0.0;
lastwinner := 0;
end end;

procedure initrepreinforcement(var rep:text; var reinforcementrec:rrecord);
{ inmitial reinforcement report }
begin with reinforcementrec do begin

writeln(rep);

writeln{rep, 'Reinforcement Parameters’);

writeln(rep, '--------occcccceszacra.t);

writeln(rep, ‘Reinforcement reward = ', reward:8:1):
end end;

FIGURE D.11 Reinforcement routines are in reinforc.scs.

363

364

function criterion(var rrec:rrecord; var environrec:erecord):boolean;
| return true if criterion is achieved)
var tempflag:boolean;
begin with rrec do with environrec do begin
tempflag := (output = classifieroutput);
totalcount ;= totalcount + 1;
count50 := count50 + 1;
{ increment reward counters)
if tempflag then begin
rewardcount := rewardcount + 1;
rewardcount50 := rewardcount30 + 1;
end;
| calculate reward proportions: running & last 50 }
proportionreward := rewardcount/totalcount;
if (round(count50 - 50.0) = 0) then begin
proportionreward50 := rewardcount50/50.0;
rewardcount50 := 0.0; count50 := 0.0 (resst)
end;
criterion := tempflag;
end end;

procedure payreward(var population:poptype; var rrec:rrecord;
var clearingrec:crecord),
| pay reward to appropriate individual |
begin with population do with rrec do with clearingrec do
with classifier|[winner] do begin
strength := strength + reward;
lastwinner := winner
end end;

procedure reportreinforcement(var rep:text; var reinforcementrec:rrecord);
| report award)
begin with reinforcementrec do begin

writeln(rep);
writeln{rep, 'Reinforcement Report’');
writeln(rep, '-----scvcemcnaccnnan b -

writeln(rep, 'Propoertion Correct (from start) = ',
proportionreward:8:4);
writeln(rep, 'Proportion Correct (last fifry) ="',
proporcionreward50:8:4);
writeln(rep, 'Last winning classifier number ="',
lastwinner:8);
end end;

procedure reinforcement(var reinforcementrec:rrecord; var population:poptype;
var clearingrec:crecord; var environrec:erecord);
{ make payment if criterion satisfied)
begin
if erirterion(reinforcemencrec, environrec) then
payreward(population, reinforcementrec, clearingrec);
end;

FIGURE D.11 (Continued)

[advance.scs: advance variables for next time step |
procedure advance(var clearingrec:crecord);

| advance winner }
begin with clearingrec do oldwinnmer := winner end;

FIGURE D.12 Iteration advance coordinator is in advance.scs.

{ ga.scs: genetic algorithm code for SCS) 365

| data declarations)
const maxmating = 10;

type mrecord = record
matel, mate2, mortl, mort2, sitecross:integer
end;
marray = array|l..maxmacing] of mrecord;
grecord = record
proportionselect, pmutation, pcrossover:real;
ncrossover, mmutation, crowdingfactor, crowdingsubpop,
nselect:integer;
mating:marray; | mating records for ga report]
end;

var garec:grecord,;
gfile:text;

procedure initga(var gfile:text; var garec:grecord; var population:poptype);
| initialize ga parameters)
begin with garec do with population do begin
readln(gfile, proportionselect);
readln(gfile, pmutation);
readln(gfile, pcrossover);
readln(gfile, crowdingfactor);
readln(gfile, erowdingsubpop);
nselect := round(proportionselect * nclassifler * 0.5);
| number of mate pairs to select)
nmutation := 0; nerossover := 0;
end end;

procedure initrepga(var rep:text; var garec:grecord);
(initial reporct)
begin with garec do begin

writeln(rep);

writeln(rep, 'Generic Algorithm Parameters’);

writeln(rep, "--=---scccccmcccrcnnnnnnann. '
writeln(rep, 'Proportion to select/gem = ', proportionselect:B:4);
writeln{rep, 'Number to select = ', nselect:8);
writeln(rep, 'Mutation probability = ', pmutation:8:4);
writeln(rep, 'Crossover probability = ', pcrossover:8:4);
writeln(rep, 'Crowding factor = ', erowdingfacror:8};
writeln(rep, 'Crowding subpopulation = ', crowdingsubpop:8);
end end;

function select(var population:poptype):integer;
{ select a single individual according to strength)
var rand, partsum:real;
j:integer;
begin wirh population do begin
partsum := 0.0; j := 0;
rand := random * sumstrength;
repeat
Ji=31+1;
partsum := partsum + classifier[j].strength
until (partsum >= rand) or (j = nclassifier);
select := j;
end end;

function mutation(positionvalue:trit; pmutation:real;

var nmutation:integer):tric;
| mutate a single position with specified probability }

FIGURE D.13 The genetic algorithm routines are in ga.scs.

366

var tempmutation:integer;
begin

if flip(pmutation) then begin

tempmutation := (positionvalue + rnd(1,2) + 1) med 3 - 1;
nmutation := nmutation + 1;
end
else tempmutation := positionvalue;

mutation = tempmutation

end;

function bmutation(positionvalue:bit; pmutation:real;
var nmutation:integer):bic;
| mutate a single bit with specified probabilicy }
var tempmutation:integer;
begin
if flip(pmutation) then begin
tempmutation := (posicionvalus + 1) mod 2;
nnutation := mmutation + 1;
end
else tempmutation := positionvalue;
bmutation := tempmutation
end;

procedure crossover(var parentl, paremt2, childl, child2:classtype;
perossover, pmutaction:real;
var sitecross, nposition, ncrossover,
nmutation:integer);
| cross a pair at a given site with mutation on the trit transfer |
var inheritance:real; j:integer;
begin
if flip(pcrossover) then begin
sitecross := rnd(l, npesitien);
ncrossover = ncrossover + 1;
end
else sitecross := nposition + 1 [transfer, but no cross };
| transfer action part regardless of sitecross)
childl.a := bmutation(parentl.a, pmutation, nmutation);
child?.a := bmutation(parent2.a, pmutation, nmutation);
| transfer and cross above cross site |
J := sitecross;
while (j <= nposition) do begin
child2.c(j] := mutation(parentl.c[j], pmutation, nmutation);
childl.e¢[j] := mutacion(parent2.c[j], pmutation, mmutation);
Ji=3+1

+
v

J =1
| transfer only below cross site |}
while (] < sitecross) do begin
childl.e[j] := mutation(parentl.c[j], pmutation, mmutation};
child2.c[]j] := mutation(parent2.c[j], pmutation, nmutation);
ji=j+1
end;
children inherit average of paremtal strength values |
inheritance := avg(parentl.strength, parent.strength);
with childl do begin
strength := ipheritance; matchflag := false;
ebid := 0.0; bid := 0.0;

specificity := countspecificity(c, nposition);
end;

with child2 do begin
strength := inheritance; matchflag := false;
ebid := 0.0; bid := 0.0;
specificity := countspecificity(c, mposition);
and ;

end;

FIGURE D.13 (Continued)

p—

function worstofn(var population:poptype; n:integer):integer; 367
| select worat individual from random subpopulation of size n |
var j, worst, candidate:integer; worststrength:real;
begin with population do begin
[initialize with random selection)
worst := rnd(l, nclassifier);
worststrength := classifier(worsc).strength;
[select and compare from remaining subpopulation |
if (n > 1) then for | := 2 to n do begin
candidate := rnd(l, nclassifier);
if worstsctrength > classifier|candidate].strength then begin
worst := candidate;
worststrength := classifier(worst].strength;
end;
end;
| return worst |
worstofn := worst;
end end;

function matchcount(var classifierl, classifier2:classtype;
nposition:integer):integer;
| count number of positions of similaricy)
var tempcount, j:integer;
begin
if (classifierl.a = classifier2.a) then tempcount := 1
else tempcount := 0;
for | := 1 to npesition do
if (classifierl.c[j] = classifler2.c[j]) then tempcount := tempcount + 1;
matchcount := tempcount;
end;

function crowding(var child:classtype; var population:poptype;
crowdingfactor, crowdingsubpop:integer):integer;
| replacement using modified De Jong crowding |
var popmenmber, j, match, matchmax, mostsimilar:integer;
begin with population do begin
matchmax := -1; mostsimilar := O;
if (crowdingfactor < 1) then crowdingfactor := 1;
for j := 1 to crowdingfactor do begin
popmember := worstofn{populatiom, crowdingsubpop); [pick worst of n |
match := matchcount(child, classifier[popmember], nposition);
if match > matchmax then begin
matchmax := match;
mostsimilar := popmember;
end;
end;
crovding - mostsimilar;
end end;

procedure statistics(var population:poptype);
| population statistics - max, avg, min, sum of strength |}
var j:integer;
begin with population do begin
with classifier(l] do begin
maxstrength := strength;
minstrength := strength;
sumstrength := strength;
end;
=23
while (j <= nclassifier) do with classifier(]] do begin
maxstrength := max(maxstrength, strength);
minstrength := min{minstrength, strength);

FIGURE D.13 (Continued)

368

sunstrength := sumstrength + strength;
jJi=3+1;
end;
avgstrength := sumstrength / nclassifier;
end end;

procedure ga(var garec:grecord; var population:poptype);
| coordinate selection, mating, crossover, mutation, & replacement)

var j:integer; childl, child2:classtype;
begin with garec do with population do begin

statistics(population); [get average, max, min, sumstrength)

for | := 1 to nselect do with mating[]] do begin

matel := select(population);
mate? := select(population);

{ plck mates)

crossover(classifier[matel], classifier|mate2], childl, child2,
pcrossover, pmutation, sitecross, nposition,

nerossover, mmutation);

| eross & mutate |

mortl := crowding(childl, population, crowdingfactor, crowdingsubpop);
sumstrength := sumstrength - classifier[mortl].strength

+ childl.strength;

| update sumstrength }

classifier[morcl] := childl; (imsert child in mortl’'s place |
mort2 := crowding(child2, population, crowdingfactor, crowdingsubpop);
sumstrength := sumstrength - classifier[mortl].strength

+ child2, strength;
classifier[mort2) := child?;
end;
end end;

procedure reportga(var rep:text; var garec:grecord;

| report on mating, crossover, and replacement |
var j:integer;
begin with garec do with population do begin
page(rep);
writeln(rep, 'Genetic Algorithm Report');

| update sumstrength)

var population:poptype);

writeln(rep, -----=-s=-seccemmnnnannn b -
writeln(rep);
writeln{rep,'Pair Matel Mare? SiteCross Mortl Mortl2');
writeln(rep,’'--~--=-==c=-vecrrmcenananan- S e i 1
for § := 1 to nselect do with mating(j] do
writeln(rep,j:3," ! matel:3,’ t mate2:3,’' ! ,sitecross:3,
! r ,mortl:3,”’ ' mort2:3);
writeln(rep);
writeln{rep,’'Statistics Report’);
wvriteln(rep, ' -----====c=caeaaat);

writeln{rep,’' Average strength = ' ,avgstrength:
writeln(rep,' Maximum strength = " maxstrength:
writeln{rep,’ Minimum strength = " minstrength:
writeln{rep,’' Sum of strength = ', sumstrength:8

8:2);
8:2);
8:2);

:2);

writeln(rep,’' Number of crossings = ',ncrossover:8);
writeln(rep,' Number of mutations = ‘, nmutation:8);

end end;

FIGURE D.13 (Continued)

{ utility.ses: utility procedures and functiens |

function poweri(x:real; i:integer):real;
var powertemp:real;
begin
powertemp := 1.0;
if i=0 then powertemp := 1.0
else if {>0 then
repeat

FIGURE D.14 Computational utilities are in utility.scs.

powertemp = powertemp * x;
i =41 -1
until i=0
else Lf {<D then
repeat
povertemp := powertemp / x;
1 :=1+1
until i=0;
poweri := powertemp
end;

| global variables for randomnormaldeviate - watch for conflicting names
var rndx2:real;
rndcaleflag:boolean;

procedure initrandomnormaldeviate;
[initialization routine for randomnormaldeviate |
begin rndcalcflag := true end;

function randomnormaldeviate:real;
{ random normal deviate after ACM algorithm 267 / Box-Muller Method |}
var t, rndxl:real;
begin
if rndcalcflag then begin
rndxl := sqret(-2.0%ln(random));
t := 6.2831853072 * random;
rndx2 := rndxl * sin(c);
rndcalcflag := false;
randomnormaldeviate := rndxl * cos(t)
end else begin
randomnormaldeviate := rndx2;
rndcalcflag := true
end;
end;

function noise(mu, sigma:real):real;
{ normal noise with specified mean & std dev: mu & sigma |
begin noise := randomnormaldeviate * sigma + mu end;

function rndreal({lo, hi:real):real;
| real random number between specified limirs |
begin rndreal := random*(hi-lo) + lo end;

function max(x, y:ireal):real;
{ return maximum of twe wvalues |
begin if x > y then max := x else max := y end;

function min(x, y:real):real;
[return minimum of twe real wvalues)
begin if x < y then min := x else min := y end;

function avg(x, y:real):real;
| return average of two real values)
begin avg := 0.5 * (x + y) end;

function halt:boolean;
| Test for key press and query for halt flag |}
const times = 100;
var temp:boolean; ch:ichar; j:integer;
begin
j :=0;
repeat j := j+1 until keypressed or (j>=times);
temp = (j<times);

FIGURE D.14 (Continued)

369

370 if temp then begin
write(’Halt (y/n)? > "); readln(ch);
temp := (ch = 'y') or (ch = 'Y');
end;
halt := temp;
end;

FIGURE D.14 (Continued)

(* I0 Routines- File opening routines *)
type query_type = (interactive, batch);
ExXt = string[80];

var qflag:query type;
fn:txt;

procedure page(vat out:text);
begin write(out,chr(12)} end;

procedure open_input(var input:text; query_flag:query_type;
message:txt; var filename:txt);
begin
if (query_flag-batch) then assign(input,filename)
else begin
write('Enter ' message,' filename: ');readln(filename);
assign(input,filename);
eand;
reset(input);
end;

procedure open_output(var output:text; query_flag:query_type;
message:txt; var fllename:txt);
begin
if (query_flag-batch) then assign(output,filename)
else begin
write('Enter ' message,’' filename: ');readln(filename);
assign(output, filename);
end;
rewrice{(output);
end;

FIGURE D.15 Input output utilities are in fo.scs.

0 | initialiteration) | time.dta }
0 { initialblock }

2000 | reportperiod)

50 [consolereportperiod }

50 { plotreportperiod |

-1 | gaperiod }

FIGURE D.16 The file time.dta contains a sample file.

2 | number of address lines on multiplexer } | emviron.dta }

FIGURE D.17 The file environ.dta contains a sample efile.

1.0 { reward) { reinf,dta | N

FIGURE D.18 The file reinf.dia contains a sample rfile.

crowdingfactor)
crowdingsubpop)

0.20 proportionselect | | ga.dca)
0.02 pmutation |

1.0 pcrossover |

k]

3

FIGURE D.19 The file ga.dia contains a sample gfile.

nposition) | perfect.dta)
nclassifier |
pgeneral |
cbhid)
bidsigma |
bidcax }
lifetax)
bid 1)
bid 2)
ebid 1 }
{ ebid 2)
10 | perfect rules)
w#wl00:1 10
##0w01:0 10
##lue0l:1 10
#0#810:0 10
#lewl0:1 10
Ow##ll:0 10
Iwwwll:1 10
#upnes:0 10 [general rules]
wiai: 1 10
n { bucketbrigadeflag }

[=]

OHNONOOOOO MM
i =
w
—— e

glbxo 0000 =W
(=]
(=]
=

FIGURE D.20 The file perfect.dta contains a sample cfile for the perfect rule
set experiments of Chapter 6.

[{ nposition) [lessthan{perfect).dta |}
7 { nclassifier)

0.5 { pgeneral |}

0.1 (cbid)

0.075 { bidsigma)

0.01 { bidtax }

0.00 { lifetax |}

1.00 { bid 1)

0.00 ({ bid 2)

1.00 | ebid 1)

0.0 { ebid 2 }

###000:0 10 | default hierarchy }
##0#01:0 10

#0w#10:0 10

O###ll:0 10

sadunn:l 10

Om##ll:1 10 | monkey wrenches }
#awens:0 10

n | bucketbrigadeflag |

FIGURE D.21 The file lessthan.dta (less-than-perfect) contains a sample cfile
for the default hierarchy experiments of Chapter 6.

372 Appendix D / A Simple Classifier System (SCS) in Pascal

nposition) | classl00.dta)
nclassifier)
pgeneral)
cbid)
bidsigma)
bidtax)
lifetax)
bid 1 }

bid 2 }

ebid 1)

125 | ebid 2)
RRRRRR:0 10

RRRRRR:0 10

RRRRRR:0 10

RRRRER:0 10

RRRRRR:0 10

RRRRRR:0 10

RRRERR:0 10

RRRRRR:0 10

RERRRRR:0 10

; [=]
= o

COoO000000 0K
o
=
————————— g

RRRRRR:1 10
RERRRR:1 10
RRRRRR:1 10
RRRRRR:1 10
RRRRRR:1 10

RERRRR:1 10
RRRRRR:1 10
RRRRRR:1 10
RRRRRR:1 10
n | buckecbrigadeflag)

FIGURE D.22 The file class100.dta contains a sample cfile for the clean slate
experiments of Chapter 6. Only 10 of each type of rule are shown for brevity.

Partition Coefficient
Transforms for Problem-
Coding Analysis

Effective processing by genetic algorithms occurs when building blocks—rela-
tively short, low-order schemata with above-average fitness values—combine to
form optima or near-optima. That this inverted cascade of schemata does lead to
desirable points has often been taken as an article of faith (the so-called building
block hypothesis). Recently, a number of investigators have developed methods
for analyzing when problem-coding-operator combinations should (and should
not) be expected to lead to good strings. These efforts divide into two groups,
depending on their use of dynamic or static methods.

The dynamic approach, as sampled briefly in Chapter 2 in connection with
the minimal deceptive problem (MDP), uses a full analysis of the propagation of
competing species of schemata through the nonlinear difference equations re-
sulting from combined consideration of operators, coding, and objective func-
tion. This kind of analysis leads to conclusive results in small problems, and
recently developed (Bridges and Goldberg, 1987) equations of motion under
reproduction and crossover for general /-bit codings permit dynamic analysis of
higher-order problems.

The static approach (Bethke, 1981; Holland, 1987b) uses efficient transform
methods to calculate schema averages. These averages are then used to deter-
mine whether the building block hypothesis is satisfied (whether short, low-or-
der, high-performance schemata do combine to form longer, higher-order, higher-
performance schemata) or not (whether the problem is GA-deceptive). Holland
(personal communication, 1987) has recently extended his analysis to popula-

374

Appendix E / Partition Coefficient Transforms for Problem-Coding Analysis

tions with nonuniform proportions of strings. In the uniform case it may be
shown that Bethke's and Holland's techniques are equivalent. In this appendix we
follow Holland's notation and explore his method of partition coefficients; we
apply it to the analysis of a simple coding-problem combination. Its use is out-
lined in the design of GA-deceptive problems.

PARTITION COEFFICIENT TRANSFORM

We consider a mapping f from the /-bit strings into the real numbers:

/
fi{o 1y =R

We take schemata over the strings in the usual way, and we define a partition
number j for those schemata that share the same fixed positions:

JH) = E’atb.)z'-*.

where 7 is an index over the string positions and the function « assumes a value
of 0 when b, = * and a value of 1 otherwise. In this way the partition number
function j assigns a unique number to each of the 2 partitions of the string space
defined by the set of 2’ fixed positions. For example, the schema *** is assigned
the partition number j(***) = 0. The schemata **0 and **1 share the partition
number j = 1, and the schema 0*1 is assigned a partition number j(0*1) = 5.

To calculate the partition coefficients, we also define a function o over the
set of all schemata where o assumes a value of 1 when a schema contains an even
number of 0's and a value of — 1 otherwise:

i
a(H) = [[(—1),
=]
where (3 takes on a value of 1 when b, = 0 and 0 otherwise,
Having defined the partition number j and the o-function, we may now define
the partition coefficients ; with a set of formulas of the following form:

fH) = H_E_;'BU'(H' Yequry

The summation is thus taken over all similarity subsets H' which contain the
schema H.

There are clearly 3’ such equations, one for each of the 3/ schemata; however,
only 2' of these are independent because there are only 2’ €'s (another way to
view this is that we are simply transforming the 2’ fitness values associated with
each of the strings to 2’ other real coefficients). We do not prove the partition
coefficient equation here; however, one straightforward proof considers the bits
as binary variables %, drawn from the set {— I, 1}. It is then easy to show that any
function f can be written as an [-degree polynomial in the #; and that there is a

An Example: f{x) = x* on Three Bits a Day 375

one-to-one mapping between the coefficients of that polynomial and the &'s. The
truth of the transform then follows directly from the form of the polynomial. The
next section investigates further the method by calculating the partition coeffi-
cients on a simple function and coding.

AN EXAMPLE: f(x) = x* ON THREE BITS A DAY

To better understand the partition coefficient transform, let's calculate the e's for
a particular problem: fix) = x? coded as a three-bit, unsigned integer. To start,
we write eight equations, one for each of the schemata containing only *'s and

1's:

) = &

ﬂttl) - ED + EII

f(*1*) = g, + &y,

f*11) =g, + & + g, + &y,
A1%*) = g, + g

f1*1) = g, + &, + g4 + Eg
S(11*) = g, + €; + g, + &

fl11) =g, + &, + &, + €5 + &; + &5 + g5 + E4.

This enumeration suggests a reasonably efficient algorithm for calculating the e's
(a fast Walsh transform would speed things even further, but we use this trian-
gularization to retain some physical insight): simply calculate the schema aver-
ages directly in the order shown, and then calculate the e’s by back substitution,
Performing these computations, we obtain the following f and e values:

Partition Number j Schema H f{H) «&(j)

0 i 175 175
1 | 210 35
2 *1* 245 70
3 *11 200 10
4 1 315 140
5 1*1 37.0 2.0
6 11* 425 4.0
7 111 49.0 0.0

Having calculated the &'s, we may directly calculate any schema average we wish
to consider. For example, £**0) = g, — g, = 17.5 — 3.5 = 14. This may be
verified by direct computation: f{**0) = (0 + 4 + 16 + 36)4 = 14.0. Although
other schemata may be obtained as directly, we must further inquire as to the
meaning of the e¢'s and how they may be used to analyze GAs and schema
processing.

376

Appendix E / Portition Coefficient Transforms for Problem-Coding Analysis

WHAT DO THE PARTITION COEFFICIENTS MEAN?

That we can calculate these partition coefficients reasonably efficiently is com-
forting, but we are really concerned with understanding the nature of nonline-
arity in the binary-coded problems thart arise when using the GA method. To see
the connection between bitwise nonlinearity and the e coefficients, we make
some deeper comparisons using our example problem. Consider the formulas for
the fitness values of two competing schemata, for example **1 and **0:

A1) = e +
L**0) = g4 — &,

Since the coefficient g, is simply the average of all fitness values in the space (the
fitness of the schema ***), the coefficient g, is a direct measure of the influence
of a single 1 acting in the least significant bit. In effect it is the average increment
(above population average) due to a 1 at that position. Similar conclusions may
be drawn concerning the other one-bit partition coefficients (&, and ;) and their
effect on competing schemata average fitness values:

*1%) = g, + ¢y
K*0*) =g, — 8,
A1) =g + g
ﬂnu) = Ep — Ey

This view of the ¢'s almost begs us to consider higher-order schemata. We might
think of constructing a low-order approximation to a higher-order schema by
summing the increments (or decrements) above average fitness for all fixed, one-
bit schemata. For example, since the intersection of *1* and **1 is *11, a low-
order approximation to the fitness of that schema would simply sum g, and ¢,
and add it to the space average fitness (g,). Introducing the hat ~ to indicate an
estimate, we obtain the following expression:

1) =g, + g + ¢,

Comparing this to the actual expression for the fitness of the schema *11, we
obtain a difference between the low-order model and the correct schema, aver-
age fitness as follows:
f11) — f*11) = &,

In this case, the two-bit partition coefficient e, describes the fitness contribution
due to epistatic interaction of the bits in the two rightmost positions. More gen-
erally, we can see the role of higher-order partition coefficients. They describe
the fitness contribution caused by the epistatic interaction of a particular set of
two or more bits. It is a straightforward exercise to pursue this notion of increas-
ingly higher-order estimates of schema averages. Instead we investigate the use
of the partition coefficients in the analysis and design of GA-deceptive problems.

Designing GA-Deceptive Problems with Partition Coefficients 377

USING PARTITION COEFFICIENTS TO ANALYZE
DECEPTIVE PROBLEMS

Partition coefficients identify the bitwise nonlinearities contained in a function
that maps binary vectors into the reals. Although this identification is useful in its
own right, in the study of genetic algorithms, partition coefficients are primarily
useful for two things: the analysis of whether problems are GA-deceptive and the
design of problems that are. We consider simple examples of deception analysis
in this section,

The analysis of whether problems are GA-deceptive is very straightforward.
Consider our three-bit example problem. Can we determine from the e values
whether this function is deceptive? Since the point 111 is optimal, for deception
we require that some schema containing a 0 have higher average fitness than its
competitors containing only *'s and 1's. Considering the one-bit schemata, one
or more of the following conditions must hold true:

A(**1) < [*°0),
ﬂ'l.) {ﬁtﬂl).
ﬂl!i) {_,(0*.),

In terms of the & values we write three equivalent relations as follows:

g, <0,
g, < 0,
g < 0.

Checking the table of ¢ values in the previous section we see that none of these
&'s are negative and we therefore conclude that the problem is not one-bit de-
ceptive. We can write additional relations for the order-two schemata, and in this
case none turn out to be misleading either. As a result we conclude that this
problem is not deceptive and should yield to simple GA search. If we had found
that one or more of the deception conditions were satisfied, we would suspect
that we might have a difficult (GA-hard) problem. Further analysis would be re-
quired to determine whether the problem was indeed GA-hard, because a func-
tion that is GA-deceptive may not be GA-hard (for example, the minimal
deceptive problem), but a GA-hard function is always GA-deceptive.

DESIGNING GA-DECEPTIVE PROBLEMS WITH
PARTITION COEFFICIENTS

Analyzing whether specific problems are deceptive is useful, but we may also
want to design partially or fully deceptive problems. This may easily be done
using partition coefficients. To see this we outline the optimality and deception
conditions required.

378

Appendix E / Partition Coefficient Transforms for Problem-Cading Analysis

Again let's assume that point 111 is the best. A set of seven inequalities may
then be written of the form f,,, > fio, fir1 = foor, and so on. Using the partition
coefficient transform, these inequalities may be written in terms of the g’s:

g, + &, + g5+ 8,>0,

E, + &, + g5 + £; >0,
g, + €g; + &y + g5 > 0,
g, + Eq + Eg + E5 > 0,
E, + By + &84 + g5 >0,
E; + 4 + g4 + E5 > 0,

g, +t g+t e, >0
The seven optimality conditions may be used with one or more deception con-

ditions to introduce deceptive nonlinearities. For one-bit deception we require
one or more of the following conditions:

g, <0,
g, <0,
g, < 0,

For two-bit deception we require one or more of the following sets of conditions
to hold:

£, t g, <0;e;, + £, <0;g, +&;<0,
g, t g, <0;e, + g, <0;g, +eg;<0,
g, t e, <0;e;, + g, <0;e;, + g, <0.

The design of a particular deceptive problem is left as an exercise.

SUMMARY

This appendix presents a method of performing static schema analysis using
Holland’s method of partition coefficients. The procedure permits direct analysis
of schema averages for particular functions and codings. It also permits the design
of functions with specified epistasis. These applications may be used to shed ad-
ditional light on appropriate functions, codings, and operators for better genetic
algorithm performance.

B PROBLEMS

E.1. Calculate the partition coefficients for the function {x) = (x — 3.5)* using
a three-bit unsigned integer coding for the parameter x. What is true about all
the one-bit &'s? Why is this so?

Computer Assignments 379

E.2. For the function, filx, 4 z) = 10 + x + 2y + 4z where x,) and z are
binary variables drawn from the set {— 1, 1}, calculate the partition coefficients
for this problem assuming a string coding z'y'x’. Here the unprimed-to-primed
mapping assumes that a 1 is coded asa 1 and a — 1 is coded as a 0. What is true
about all second- and third-order partition coefficients and why?

E.3. Generalize the result of Problem E.2 to any /-bit linear function of the form
flx) = Zax, + b with x, € {—1, 1} and a string coding x'x',_, ... x,x', with
x; € {0,1}

E.4. For the function flx, 3, z) = 10 + x + 2y + 4z —xy + 2yz — xyz where
x, y and z are binary variables drawn from the set {— 1, 1}, calculate the partition
coefficients assuming a string coding z'y'x" where x', y', 2’ € {0, 1}. What is the
relationship between the polynomial coefficients and the partition coefficient val-
ues? Is this a general property?

E.5. Earlier it was shown that the three-bit partition coefficient (&,) for the func-
tion lx) = x® coded as an unsigned binary integer was zero. Show that this is
true for any quadratic function f{x).

E.6. Calculate the partition coefficients for the function flx) = x for a four-bit
unsigned Gray-coded integer. What is the highest order nonlinearity of this prab-
lem coding?

E.7. Design a three-bit deceptive function that is entirely one-bit deceptive at
all three bits, and two-bit deceptive over the two least significant bits. Specify the
function by writing out the function values at all eight points. Assume that f,,, is
the global maximum.

B COMPUTER ASSIGNMENTS

A. Write a computer program that calculates any specified string or schema
fitness given the e's.

B. Write 2 computer program that calculates the partition coefficients g, given
the string fitness values f.

C. Calculate the Walsh coefficients of a function using a fast Walsh transform.
Compare the Walsh coefficients to the & values calculated by the program of
Computer Assignment B.

’ Bibliography

Ackley, D. H. (1985). A connectionist algorithm for genetic search. Proceedings of an
International Conference on Genetic Algorithms and Their Applications, 121-135.

Antonisse, H. J., & Keller, K $. (1986). Dynamic evaluation of imprecisely specified knowl-
edge. Proceedings of the Digital Avionics Systems Conference, 596—600,

Antonisse, H.], & Keller, K 5. (1987). Genetic operators for high-level knowledge repre-
sentations. Genetic algoritbms and their applications: Proceedings of the Second Inter-
national Conference on Genetic Algorithms, 69-76.

Avriel, M. (1976). Nonlinear programming: analysis and methods. Englewood Cliffs, NJ:
Prentice-Hall.

Axelrod, R. (1985, August). Modeling the evolution of norms. Paper presented at the
American Political Science Association Meeting, New Orleans, LA.

Axelrod, R. (1985, November). The simulation of genetics and evolution. Paper pre-
sented at A Conference on Evolutionary Theory in Biology and Economics, University of
Bielefeld, Federal Republic of Germany.

Axelrod, R. (1987). The evolution of strategies in the iterated prisoner’s dilemma. In L.
Davis (Ed.), Genetic algorithms and simulated annealing (pp. 32—41). London: Pitman,

Bagley,]. D. (1967). The behavior of adaptive systems which employ genetic and corre-
lation algorithms. (Doctoral dissertation, University of Michigan). Disserfation Abstracis
International, 28(12), 5106B. (University Microfilms No. 68-7556)

Bailey, . E., & Krishnakumar, K (1987). Total energy control concepts applied to flight in
windshear. Proceedings of the AIAA Guidance, Navigation, and Control Conference, 525—
532.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. Proceedings of an
International Conference on Genetic Algorithms and Their Applications, 101-111.
Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. Genetic
algoritbms and their applications: Proceedings of the Second International Conference
on Genetic Algorithms, 14-21.

382

Bibliography

Barricelli, N. A. (1957). Symbiogenetic evolution processes realized by artificial methods,
Methodos, 9(35-36), 143—-182,

Barricelli, N. A. (1962). Numerical testing of evolution theories. ACTA Biotheoretica, 16,
69-126.

Barto, A. G., Anandan, P, & Anderson, C. W. (1985). Cooperativity in networks of pattern
recognizing stochastic learning automata. Proceedings of the Fourth Yale Workshop on
Applications of Adaptive Systems Theory, 85-90.

Beightler, C. S, Phillips, D. T., & Wilde, D. J. (1979). Foundations of optimization (2nd.
ed.). Englewood Cliffs, NJ: Prentice-Hall.

Belew, R. (1981). [Operation description for Model T classifier system]. Unpublished
manuscript.

Bellman, R. (1961). Adaptive control processes: A guided tour. Princeton, NJ: Princeton
University Press.

Bennett, W. H,, & De Jong, K. A. (in press). Adaptive search techniques and the design of
decentralized control systems (NRL Memorandum Report). Washington, DC: Naval Re-
search Laboratory.

Bernstein, A., & Rubin, H. (1965). Artificial evolution of problem-solvers. The American
Bebavioral Scientist, 8(9), 19-23.

Berry, R. J. (1965). Genetics. London: English University Press.

Bethke, A. D. (1976). Comparison of genetic algorithms and gradient-based optimizers
on parallel processors: Efficiency of use of processing capacity (Technical Report No.
197). Ann Arbor: University of Michigan, Logic of Computers Group.

Bethke, A. D. (1978). Genetic algoritbms as function optimizers (Technical Report No.
212). Ann Arbor: University of Michigan, Logic of Computers Group.

Bethke, A. D. (1981). Genetic algorithms as function optimizers. (Doctoral dissertation,
University of Michigan). Dissertation Abstracts Infernational 41(9), 3503B. (University
Microfilms No. B106101)

Bethke, A. D., Zeigler, B. P, & Strauss, D. M. (1974). Convergence properties of simple
Eenetic algoritbms (Technical Report No. 159). Ann Arbor: University of Michigan, De-
partment of Computer and Communication Sciences.

Bickel, A. S., & Bickel, R. W. (1987). Tree structured rules in genetic algorithms. Genetic
algorithms and their applications: Proceedings of the Second International Conference
on Genetic Algorithms, 77-81.

Bledsoe, W. W. (1961, November). The use of biological concepts in the analytical study
of systems. Paper presented at the ORSA-TIMS National Meeting, San Francisco, CA.
Bledsoe, W. W, & Browning, L. (1959). Pattern recognition and reading by machine. Pro-
ceedings of the Eastern Joint Computer Conference, 225-232.

Bonomi, E., & Lutton, J. L. (1984). The N-city traveling salesman problem: Statistical me-
chanics and the Metropolis algorithm. STAM Review, 26(4), 551-569.

Booker, L. B. (1981). Monday evening satellite session. In J. R. Sampson (Ed.), A Synopsis
of the Fifth Annual Ann Arbor Adaptive Systems Worksbop (pp. 81-86). Ann Arbor: Uni-
versity of Michigan, Department of Computer and Communication Sciences, Logic of Com-
puters Group.

Bibliography 383

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment. { Doc-
toral dissertation, Technical Report No. 243. Ann Arbor: University of Michigan, Logic of
Computers Group). Dissertations Abstracts International, 43(2), 469B. (University Mi-
crofilms No. B214966)

Booker, L. B. (1985). Improving the performance of genetic algorithms in classifier sys-
tems. Proceedings of an International Conference on Genetic Algorithms and Their Ap-
Plications, 8092,

Booker, L. B. (1987). Improving search in genetic algorithms. In L. Davis (Ed.), Genetic
algorithms and simulated annealing (pp. 61-73). London: Pitman.

Booker, L. B., & De Jong, K. A. (1985). ADOPT |Computer program in C for genetic algo-
rithms). Washington, DC: Naval Research Laboratory.

Booker, L. B., Goldberg, D. E,, & Holland, J. H. (1987) Classifier systems and genetic
algorithms (Technical Report No. 8). Ann Arbor: University of Michigan, Cognitive Sci-
ence and Machine Intelligence Laboratory.

Borland International, Inc. (1985). Turbo Pascal Version 3.0 reference manual. Scotts
Valley, CA: author.

Bosworth,], Foo, N, & Zeigler, B. P. (1972). Comparison of genetic algorithms with
conjugate gradient methbods (CR-2093). Washington, DC: National Aeronautics and Space
Administration.

Bowen, D. (1986). A study of the effects of internally determined crossover and muta-
tion rates on genelic algorithm optimization. Unpublished manuscript, University of Al-
abama, Tuscaloosa.

Box, G. E P, (1957). Evolutionary operation: A method for increasing industrial produc-
tivity. Journal of the Royal Statistical Society, C, 6(2), 81-101.

Brachman, R. J., & Schmolze, J. (1985). An overview of the KL-ONE knowledge represen-
tation system. Cognitive Science 9(2), 171-216,

Brady, R. M. { 1985). Optimization strategies gleaned from biological evolution [Letter to
the editor). Nature 317, B04-806.

Brainerd, W. S., & Landweber, L. H. (1974). Theory of computation. New York: Wiley-
Interscience.

Braitenberg, V. (1984). Vehicles. Cambridge, MA: MIT Press.

Bremermann, H. . (1962). Optimization through evolution and recombination. In M. C,
Yovits, G. T. Jacobi, & G. D. Goldstein (Eds.), Self-organizing systems (pp. 93-106). Wash-
ington, D.C.: Spartan Books.

Bremermann, H. J. (1963). Limits of genetic control. IEEE Transactions on Military Elec-
tronics, MIL-7(2-3), 200—-205.

Bremermann, H. J. (1967). Quantitative aspects of goal-seeking self-organizing systems.
Progress in Theoretical Biology, 1, 59-77.

Brent, R P. (1973). Algoritbms for minimization without derivatives. Englewood Cliffs,
NJ: Prentice-Hall.

Bridges, C. L., & Goldberg, D. E. (1987). An analysis of reproduction and crossover in a
binary-coded genetic algorithm. Genetic algorithms and their applications: Proceedings
of the Second International Conference on Genetic Algorithms, 9-13.

384

Bibliography

Brindle, A. (1981). Genetic algoritbms for function optimization. Unpublished doctoral
dissertation, University of Alberta, Edmonton.

Brindle, A., & Sampson, J. (1979). Analysis of frequency error in three sampling algo-
rithms. Unpublished manuscript, University of Alberta, Department of Computing Science,
Edmonton.

Brindle, A., & Sampson, J. (1981). Genetic algorithms as adaptive search mechanisms for
Sunction optimization. Unpublished manuscript, University of Alberta, Department of
Computer Science, Edmonton.

Burks, A. W. (Ed.). (1970). Essays on cellular automata. Urbana: University of Illinois
Press.

Burks, A. W. (1986). A radically non-von-Neumann-architecture for learning and discovery.
Proceedings of the Conference on Algorithms and Hardware for Parallel Processing, 1—
17.

Burks, A. W, Zeigler, B. P, Laing, R. A., & Holland, J. H. (1974). Biologically motivated
automaton theory and automaton motivated biological research. Proceedings of the 1974
Conference on Biologically Motivated Automata Theory, 1-12.

Cavicchio, D. J. (1970). Adaptive search using simulated evolution. Unpublished doc-
toral dissertation, University of Michigan, Ann Arbor.

Cavicchio, D. J. (1972). Reproductive adaptive plans. Proceedings of the ACM 1972 An-
nual Conference, 1-11.

Cohen, M. D. (1981). The power of parallel thinking. Journal of Economic Bebavior and
Organization, 2(4), 285-306.

Cohen, M. D. (1984). Conflict and complexity: Goal diversity and organizational search
effectiveness. The American Political Science Review, 78(2), 435-451,

Cohen, M. D. (1986, October). Al-based models of organizational designs Paper pre-
sented at ORSA/TIMS Joint National Meeting, Miami, FL.

Cohen, M. D. (1987, June). Adaptation of organizational routines Paper presented at
the Workshop on Organizational Science, Massachussetts Institute of Technology, Cam-
bridge, MA.

Cohoon,). P, & Hegde, S. U,, Martin, W. N, & Richards, D. (1987). Punctuated equilibria;
A parallel genetic algorithm. Genetic algoritbms and their applications: Proceedings of
the Second International Conference on Genetic Algoritbms, 148—154.

Cohoon, J. P, & Paris, W. D. (1986). Genetic placement. Proceedings of the IEEE Inter-
national Conference on Compuiter-Aided Design, 422-425.

Conrad, M. (1979). Bootstrapping on the adaptive landscape. BioSystems, 11, 167—-182.
Conrad, M., Harth, E,, Holland, J., Martinez, H., Pattee, H., Rada, R., Waltz, D., & Zeigler, B.
(1984). Natural and artificial intelligence. Cognition and Brain Theory, 7(1), 89-104.
Coombs, 5., & Davis, L. (1987). Genetic algorithms and communication link speed design:
Constraints and operators. Genetic algoritbms and their applications: Proceedings of the
Second International Conference on Genetic Algorithms, 257-260.

Cramer, N. L (1985). A representation for the adaptive generation of simple sequential
programs. Proceedings of an International Conference on Genetic Algorithms and Their
Applications, 183—187.

Bibliography 385

Davis, L. (1985a). Applying adaptive algorithms to epistatic domains. Proceedings of the
Oth International Joint Conference on Artificial Intelligence, 162-164.

Davis, L. (1985b). Job shop scheduling with genetic algorithms. Proceedings of an Inter-
national Conference on Genetic Algorithms and Their Applications, 136—140.

Davis, L. (Ed.). (1987). Genetic algorithms and simulated annealing. London: Pitman.
Davis, L., & Coombs, S. (1987). Genetic algorithms and communication link speed design:
theoretical considerations. Genetic algorithms and their applications: Proceedings of the
Second International Conference on Genetic Algorithms, 252-250.

Davis, L., & Coombs, 8. (in press). Optimizing network link sizes with genetic algorithms.
In M. Elzas, T. Oren, & B. P. Zeigler, Modelling and simulation methodology: Knowledge
systems paradigms Amsterdam: North-Holland.

Davis, L., & Ritter, F. (1987). Schedule optimization with probabilistic search. Proceedings
of the 3rd IEEE Conference on Artificial Intelligence Applications, 231-236.

Davis, L, & Smith, D. (1985). Adaptive design for layout syntbesis (Texas Instruments
internal report). Dallas: Texas Instruments.

Davis, L., & Steenstrup, M. (1987). Genetic algorithms and simulated annealing: An over-
view. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 1-11). London:
Pitman.

Davis, R., & King, J. (1976). An overview of production systems. In E. W. Elcock & D.
Michie (Eds.), Machine Intelligence 8 (pp. 300-332). New York: Wiley.

De Groot, M. H. (1970). Optimal statistical decisions. New York: McGraw-Hill

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems,
(Doctoral dissertation, University of Michigan). Dissertation Abstracts International
36(10), 5140B. (University Microfilms No. 76-9381)

De Jong, K. A. (1976). Artificial genetic adaptive systems (Technical Report No. 76-7).
Pittsburgh: University of Pittsburgh, Department of Computer Science.

De Jong, K A. (1980a). Adaptive system design: A genetic approach. JEEE Transactions
on Systems, Man, and Cybernetics, SMC-10(9), 566-574.

De Jong, K A. (1980b). A genetic-based global function optimization technigue (Tech-
nical Report No. 80-2). Pittsburgh: University of Pittsburgh, Department of Computer
Science.

De Jong, K A. (1981). Adaptive search procedures for large complex spaces (Technical
Report No. 81-2). Pittsburgh: University of Pittsburgh, Department of Computer Science.
De Jong, K. A. (ca. 1982). [Pascal version of a general-purpose genetic algorithm computer
program). University of Pittsburgh, Department of Computer Science.

De Jong, K. A. (1985). Genetic algorithms: A 10 year perspective. Proceedings of an In-
ternational Conference on Genetic Algorithms and Their Applications, 169-177.

De Jong, K A. (1987). On using genetic algorithms to search program spaces. Genetic
algorithms and their applications: Proceedings of the Second International Conference
on Genetic Algoritbms, 210-216.

Dewdney, K. A. (1985). Exploring the field of genetic algorithms in a primordial computer
sea full of flibs. Scientific American, 253(5), 21-32.

386

Bibliography

Dolan, C. P, & Dyer, M. G. (1987). Toward the evolution of symbols. Genetic algorithms
and their applications: Proceedings of the Second International Conference on Genetic
Algorithms, 123-132.

Englander, A. C. (1985). Machine learning of visual recognition using genetic algorithms,
Proceedings of an International Conference on Genetic Algorithms and Their Applica-
tions, 197=201.

Etter, D. M., Hicks, M. }, & Cho, K. H. (1982). Recursive adaptive filter design using an
adaptive genetic algorithm. Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, 2, 635-638.

Farmer, D., Lapedes, A., Packard, N., & Wendroff, B. (Eds.). (1986). Evolution, games, and
learning. Amsterdam: North-Holland.

Farmer, J. D., Packard, N. H., & Perelson, A. S. (1985, July). The immune system and
artificial intelligence. Paper presented at an International Conference on Genetic Algo-
rithms and Their Applications, Pittsburgh.

Farmer, J. D., Packard, N. H., & Perelson, A. 8. (1986). The immune system, adaptation, and
machine learning. In D. Farmer, A. Lapedes, N. Packard, & B. Wendroff (Eds.), Evolution,
games and learning (pp. 187-204). Amsterdam: North-Holland. (Reprinted from Physica,
22D, 187-204)

Fedanzo, A. J. (1986a). Darwinian evolution as a paradigm for Al research. SIGART News-
letter, 97, 22-23.

Feller, W. (1968). An introduction to probability theory and its application. New York:
Wiley.

Fisher, R. A. (1958). The genetic theory of natural selection (rev. ed.), New York: Dover.
Fitzpatrick, J. M., Grefensterte, J. J., & Van Gucht, D. (1984). Image registration by genetic
search. Proceedings of IEEE Soutbeast Conference, 460—-464.

Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimi-
zation. Computer Journal, 6, 163—168.

Fogel, L J., Owens, A. J., & Walsh, M.). (1966). Artificial intelligence through simulated
evolution. New York: John Wiley.

Foo, N. Y., & Bosworth,). L. (1972). Algebraic, geomelric, and stochastic aspecits of
genetic operators (CR-2099). Washington, DC: National Aeronautics and Space
Administration.

Forrest, 5. (1982, August). A parallel algorithm for classification in KL-ONE networks
(Consul Note No. 15). Marina del Rey, CA: University of Southern California, Information
Sciences Institute.

Forrest, 5. (1985a). Documentation for PRISONERS DILEMMA and NORMS programs that
use the genetic algorithm. Unpublished manuscript, University of Michigan, Ann Arbor.
Forrest, S. (1985b). Implementing semantic network structures using the classifier system.
Proceedings of an International Conference on Genetic Algorithms and Their Applica-
tions, 24—44.

Forrest, 5. (1985c). A study of parallelism in the classifier system and its application to
classification in KL-ONE semantic networks. Unpublished doctoral dissertation, Univer-
sity of Michigan, Ann Arbor.

Bibliography 387

Forrest, S. (1986). The classifier system: A computational model that supports machine
intelligence. Proceedings of the 1986 International Conference on Parallel Processing
711=716.

Forrest, S. (in press). Modelling high-level symbolic structures in parallel systems that
support learning. In M. Elzas, T. Oren, & B. P. Zeigler (Eds.), Modelling and simulation
methodology: Knowledge systems paradigms. Amsterdam: North-Holland.

Forsyth, R. (1981). Beagle—A Darwinian approach to pattern recognition. Kybernetes,
10(3), 159-166.

Forsyth, R., & Rada, R. (1986). Machine learning: Applications in expert systems and
information retrieval Chichester: Ellis Horwood.

Fourman, M. P. (1985). Compaction of symbolic layout using genetic algorithms. Proceed-
ings of an International Conference on Genetic Algorithms and Their Applications,
141-153

Frantz, D. R. (1972). Non-linearities in genetic adaptive search. (Doctoral dissertation,
University of Michigan). Dissertation Abstracts International 33(11), 5240B-5241B.
{ University Microfilms No. 73-11,116)

Fraser, A. S. (1960). Simulation of genetic systems by automatic digital computers. 5-link-
age, dominance and epistasis. In O. Kempthorne (Ed.), Biometrical genetics (pp. 70-83).
New York: Macmillan.

Fraser, A. S. (1962). Simulation of genetic systems. Journal of Theoretical Biology, 2, 329-
346.

Frey, P W. (1986). A bit-mapped classifier. Byre, 11(12), 161-172.

Friedberg, R. M. (1958). A learning machine: Part I. JBM Journal of Research and Devel-
opment, 2(1), 2-13.

Friedman, G. J. (1959). Digital simulation of an evolutionary process. General Systems
Yearbook, 4, 171-184.

Fujiko, C., & Dickinson, J. (1987). Using the genetic algorithm to generate LISP source
code to solve the prisoner’s dilemma. Genetic algoritbms and their applications: Pro-
ceedings of the Second International Conference on Genetic Algorithms, 236-240.
Gerardy, R. (1982). Probabilistic finite state system identification. International fournal
of General Systems, 8 229-242.

Gillies, A. M. (1985). Machine learning procedures for generating image domain feature
detectors. Unpublished doctoral dissertation, University of Michigan, Ann Arbor.

Glover, D. E. (1986). Experimentation with an adaptive search strategy for solving a key-
board design/configuration problem (Doctoral dissertation, University of lowa). Disser-
tation Abstracts International, 47, 2996B. (University Microfilms No. 86 22767)
Glover, D. E. (1987). Solving a complex keyboard configuration problem through gener-
alized adaptive search. In L Davis (Ed.), Genetic algorithms and simulated annealing
(pp. 12-31). London: Pitman.

Goldberg, D. E (1980a). Adaptive control of gas pipeline systems. Unpublished
manuscript.

Goldberg, D. E. (1980b). Some simple experiments in genetic-like adaptation. Unpub-
lished manuscript.

Bibliography

Goldberg, D. E. (1981a). Algebraic and probabilistic properties of genetic algorithms,
Unpublished manuscript.

Goldberg, D. E. (1981b). Robust learning and decision algorithms for pipeline opera-
tions. Unpublished dissertation proposal, University of Michigan, Ann Arbor.

Goldberg, D. E (1981c). System identification via genetic algorithm. Unpublished
manuscript.

Goldberg, D. E. (1982). §GA: A simple genetic algorithm |computer program in Pascal),
Ann Arbor: University of Michigan, Department of Civil Engineering.

Goldberg, D. E. (1983). Computer-aided gas pipeline operation using genetic algorithms
and rule learning (Doctoral dissertation, University of Michigan). Dissertation Abstracts
International, 44(10), 3174B. (University Microfilms No. 8402282)

Goldberg, D. E. (1984, May). Computer-aided pipeline operation using genetic algo-
rithms and rule learning. Paper presented at the 1984 API Pipeline Cybernetics Sympo-
sium, Houston, TX.

Goldberg, D. E. (1985a). Controlling dynamic systems with genetic algorithms and rule
learning. Proceedings of the 4th Yale Worksbop on Applications of Adaptive Systems
Theory, 91-97.

Goldberg, D. E. (1985b). Dynamic system control using rule learning and genetic algo-
rithms. Proceedings of the 9th International Joint Conference on Artificial Intelligence,
I, 588-592.

Goldberg, D. E. (1985¢). Genetic algorithms and rule learning in dynamic system control.
Proceedings of an International Conference on Genetic Algorithms and Their Applica-
tions, 8—15.

Goldberg, D. E. (1985d). Optimal initial population size for binary-coded genetic al-
gorithms (TCGA Report No. 85001). Tuscaloosa: University of Alabama, The Clearing-
house for Genetic Algorithms,

Goldberg, D. E. (1986a). The genetic algorithm approach: Why, how, and what next? In K.
S. Narendra (Ed.), Adaptive and learning systems: Theory and applications (pp. 247-
253). New York: Plenum Press.

Goldberg, D. E. (1986b). Simple genetic algorithms and the minimal, deceptive problem
({TCGA Report No. 86003). Tuscaloosa: University of Alabama, The Clearinghouse for Ge-
netic Algorithms.

Goldberg, D. E. (1986¢). A tale of two problems: Broad and efficient optimization using
genetic algorithms. Proceedings of the 1986 Summer Computer Simulation Conference,
4448,

Goldberg, D. E. (1987a). Computer-aided gas pipeline operation using genetic algorithms
and rule learning. Part I: Genetic algorithms in pipeline optimization. Engineering with
Computers, 35—45.

Goldberg, D. E. (1987b). Computer-aided gas pipeline operation using genetic algorithms
and rule learning. Part [1: Rule learning control of a pipeline under normal and abnormal
conditions. Engineering with Compruters, 47-58.

Goldberg, D. E. (1987c). A note on the disruption due to crossover in a binary-coded
genetic algorithm (TCGA Report No. 87001). Tuscaloosa: University of Alabama, The
Clearinghouse for Genetic Algorithms.

Bibliegraphy 389

Goldberg, D. E. (1987d). Simple genetic algorithms and the minimal, deceptive problem,
In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 74—88). London:
Pitman.

Goldberg, D. E. (in press). Genetics-based machine learning: Whence it came, where it's
going. In M. Elzas, T. Oren, & B. P. Zeigler (Eds.), Modelling and simulation methodology:
Knowledge systems paradigms. Amsterdam: North-Holland.

Goldberg, D. E.,, & Kuo, C. H. (1985, October). Genetic algorithms in pipeline optimi-
zation. Paper presented at the 1985 mecting of the Pipeline Simulation Interest Group,
Albuquerque, NM.

Goldberg, D. E., & Kuo, C. H. (1987). Genetic algorithms in pipeline optimization. Journal
of Computers in Civil Engineering, 1(2), 128—-141.

Goldberg, D. E., & Lingle, R. (1985). Alleles, loci, and the traveling salesman problem.
Proceedings of an International Conference on Genetic Algorithms and Their Applica-
tions, 154-159.

Goldberg, D. E,, & Richardson,]. (1987). Genetic algorithms with sharing for multimodal
function optimization. Genetic algoritbms and their applications: Proceedings of the Sec-
ond International Conference on Genetic Algoritbms, 41-49.

Goldberg, D. E., & Samtani, M. P. (1986). Engineering optimization via genetic algorithm.
Proceedings of the Ninth Conference on Electronic Computation, 471-482.

Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms.
Genetic algorithms and their applications: Proceedings of the Second International Con-
Sference on Genetic Algorithms, 1-8.

Goldberg, D. E., & Smith, R. E. (1986, October). Al meets OR: Blind inferential search
with genetic algorithms. Paper presented at the ORSA/TIMS Joint National Meeting,
Miami, FL.

Goldberg, D. E.,, & Smith, R. E. (1987). Nonstationary function optimization using genetic
algorithms with dominance and diploidy. Genetic algoritbms and their applications: Pro-
ceedings of the the Second International Conference on Genetic Algorithms, 59—68.
Goldberg, D. E., & Thomas, A. L (1986). Genetic algorithbms: A bibliography 1962—-1986
{ TCGA Report No. B6001). Tuscaloosa: University of Alabama, The Clearinghouse for Ge-
netic Algorithms.

Gordon, M. D. (1984). Adaptive subject indexing in document retrieval. (Doctoral disser-
tation, University of Michigan) Dissertation Abstracts International, 45(2), 611B. (Uni-
versity Microfilms No. 8412148)

Greene, D. P, & Smith, 8. F (1987). A genetic system for learning models of consumer
choice. Genetic algorithms and their applications: Proceedings of the Second [nterna-
tional Conference on Genetic Algorithms, 217-223.

Grefenstette, J. J. (1981). Parallel adaptive algoritbms for function optimization (Tech-
nical Report No. CS5-81-19). Nashville: Vanderbilt University, Computer Science
Department.

Grefenstette, J. J. (1984a). GENESIS: A system for using genetic search procedures. Pro-
ceedings of the 1984 Conference on Intelligent Systems and Machines, 161-165.
Grefenstette, . J. (1984b). A user’s guide to GENESIS (Technical Report No. C5-84-11).
Nashville: Vanderbilt University, Department of Computer Science.

390

Bibliography

Grefenstetie, J. J. (Ed.). (1985a). Proceedings of an International Conference on Genetic
Algorithms and Their Applications Hillsdale, NJ: Lawrence Erlbaum Associates.
Grefenstette, J. J. (1985b). Representation dependencies in genetic algoritbms. Unpub-
lished manuscript.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms, JEEE
Transactions on Systems, Man, and Cybernetics, SMC-16(1), 122-128.

Grefenstette, J.). (Ed.). (1987a). Genetic algorithms and their applications: Proceedings
of the Second International Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Grefenstette,). J. (1987b). Incorporating problem specific knowledge into genetic algo-
rithms. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 42-60). Lon-
don: Pitman,

Grefenstette, J. J. (1987c). Multilevel credit assignment in a genetic learning system. Ge-
netic algorithms and their applications: Proceedings of the Second International Con-
ference on Genetic Algorithms, 202-209.

Grefenstette, J.)., & Fitzpatrick, J. M. (1985). Genetic search with approximate function
evaluations. Proceedings of an International Conference on Genetic Algorithms and
Their Applications, 112—120.

Grefenstette, J. J., Gopal, R., Rosmaita, B. J., & Van Gucht, D. (1985). Genetic algorithms
for the traveling salesman problem. Proceedings of an International Conference on Ge-
netic Algorithms-and Their Applications, 160—168.

Grosso, P. B. (1985). Computer simulation of genetic adaptation: Parallel subcompo-
nent interaction in a multilocus model (Doctoral dissertation, University of Michigan,
University Microfilms No. 8520908).

Hadamard,). (1949). The psychology of invention in the matbematical field Princeton,
NJ: Princeton University Press.

Haslev (Skanland), M. (1986). A classifier system for the production by computer of past
tense verb-forms Manuscript submitted for publication.

Hastings, H. M., & Waner, S. (1985). Biologically motivated machine intelligence. SIGART
Newsletter, 95, 29-31.

Hicklin, J. E. (19806). Application of the genetic algorithm to automatic program gener-
ation. Unpublished master’s thesis, University of Idaho, Moscow.

Hilliard, M. R, & Liepins, G. E. (1986). Genetic algorithms as discovery programs. Pro-
ceedings of the Southeastern Chapter of TIMS 22nd Annual Meeting, 16.

Hilliard, M. R., & Liepins, G. E. (1987). Representational issues in machine learning. In M.
Zemankova & M. L. Emrich (Eds.), Proceedings of the International Symposium on Meth-
odologies for Intelligent Systems. Knoxville, TN: Oak Ridge National Laboratory.

Hilliard, M. R., Liepins, G. E., Palmer, M., Morrow, M., & Richardson, J. (1987). A classifier
based system for discovering scheduling heuristics. Genetic algorithms and their appli-
cations: Proceedings of the Second International Conference on Genetic Algorithms,
231-235.

Hines, W. W., & Montgomery, D. C. (1980). Probability and statistics in engineering and
management science (2nd ed.). New York: Wiley.

Bibliography N

Hofstadter, D. R. (1979). Gddel, Escher, Bach: An eternal golden braid. New York: Basic
Books,

Holland, J. H. (1959). A universal computer capable of executing an arbitrary number of
subprograms simultaneously. 1959 Proceedings of the Eastern foint Computer Confer-
ence 108—112.

Holland,). H. (1960). lterative circuit computers. Proceedings of the 1960 Western Joint
Computer Conference, 259-265.

Holland, J. H. (1962a). Concerning efficient adaptive systems, In M. C. Yovits, G. T. Jacobi,
& G. D. Goldstein (Eds.), Self-organizing systems (pp. 215-230). Washington: Spartan
Books.

Holland,]. H. (1962b). Information processing in adaptive systems. Information Process-
ing in the Nervous System, Proceedings of the International Union of Physiological Sci-
ences, 3, 330-339.

Holland, J. H. (1962¢). Outline for a logical theory of adaptive systems. Journal of the
Association for Computing Machinery, 3, 297-314.

Holland,). H. (1965). Some practical aspects of adaptive systems theory. In A. Kent & O.
E. Taulbee (Eds.), Electronic information Handling (pp. 209-217). Washington, DC:
Spartan Books.

Holland, J. H. (1966). Universal spaces: A basis for studies of adaptation. In E. R. Caianiello
(Ed.), Automata Theory (pp. 218-231). New York: Academic Press.

Holland, J. H. (ca. 1966). Efficient adaptation over classes of non-linear environments,
Unpublished manuscript.

Holland, J. H. (1967). Nonlinear environments permitting efficient adaptation. In J. T. Tou
(Ed.), Computer and Information Sciences - Il (pp. 147-164). New York: Academic Press.
Holland,]. H. (1968). Hierarchical descriptions of universal spaces and adaptive systems
(Technical Report ORA Projects 01252 and 08226). Ann Arbor: University of Michigan,
Department of Computer and Communication Sciences.

Holland, J. H. (1969a). Adaptive plans optimal for payoff-only environments. Proceedings
of the 2nd Hawaii International Conference on System Sciences, 917-920.

Holland, J. H. (1969b). Goal-directed pattern recognition. In 5. Watanabe (Ed.), Metho-
dologies of pattern recognition (pp. 287-296). New York: Academic Press.

Holland,). H. (1969c). A new kind of turnpike theorem. Bulletin of the American Math-
ematical Society, 75, 1311-1317.

Holland, J. H. (1970a). Hierarchical descriptions of universal spaces and adaptive systems,
In A. W. Burks (Ed.), Essays on cellular automata (pp. 320—353). Urbana: University of
Illinois Press.

Holland, J. H. (1970b). Robust algorithms for adaptation set in a general formal framework.
Proceedings of the IEEE Symposium on Adaptive Processes - Decision and Control, XVII,
5.1-5.5.

Holland, J. H. (1971). Processing and processors for schemata. In E. L. Jacks (Ed.), Asso-
ciative information processing (pp. 127-146). New York: American Elsevier.

Holland, J. H. (1973a). Genetic algorithms and the optimal allocations of trials. SIAM Jour-
nal of Computing 2(2), 88-105.

392

Bibliography

Holland, J. H. (1973b). Schemata and intrinsically parallel adaptation. In K. 8. Fu & J. 8.
Tou (Eds.), Proceedings of the NSF Workshop on Learning System Theory and its Appli-
cations (pp. 43—46). Gainesville: University of Florida.

Holland, J. H. (1974). A brief discussion of the role of co-adapted sets in the process of
adaptation. In B. Dyke &). W, MacCluer (Eds.), Computer simulation in human popu-
lation studies (pp. 161-165). New York: Academic Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The Uni-
versity of Michigan Press.

Holland, J. H. (1976a). Adaptation. Progress in Theoretical Biology, 4, 263-293.

Holland, J. H. (1976b). An introduction to intrinsic parallelism. In W. Handler (Ed.), Pro-
ceedings of the Tenth Anniversary Convocation for IMMD (pp. 47-55). Erlangen, FRG:
University of Erlangen.

Holland, J. H. (1976c). New perspectives in nonlinearity, or what to do when the whole
is more than the sum of its parts. In E Suppe & P. D. Asquith (Eds.), Proceedings of the
Philosophy of Science Association Meeting (pp. 240-255). East Lansing, MI: Philosophy
of Science Association.

Holland, J. H. (1976d). Studies of the spontancous emergence of self-replicating systems
using cellular automata and formal grammars. In A. Lindenmayer & G. Rozenberg (Eds.),
Automata, Languages, Development (pp. 385-404). New York: North-Holland.

Holland, J. H. (ca. 1977). A cognitive system with powers of generalization and adap-
tation. Unpublished manuscript, University of Michigan, Department of Computer and
Communication Sciences, Ann Arbor.

Holland, J. H. (1980a). Adaptive algorithms for discovering and using general patterns in
growing knowledge-bases. International Journal of Policy Analysis and Information
Systems, 4(3), 245-268.

Holland,). H. (1980b). Adaptive knowledge acquisition. Unpublished research proposal,
Holland, J. H. (1981). Genetic algorithms and adaptation. (Technical Report No. 34).
Ann Arbor: University of Michigan, Department of Computer and Communication
Sciences.

Holland, . H. (1983a). Induction in artificial intelligence (Technical Report). Ann Arbor:
University of Michigan, Department of Computer and Communication Sciences.

Holland, J. H. (1983b). A more detailed discussion of classifier systems (Technical Re-
port). Ann Arbor: University of Michigan, Department of Computer and Communication
Sciences.

Holland, J. H. (1984). Genetic algorithms and adaptation. In O. G. Selfridge, E. L. Rissland,
& M. A. Arbib (Eds.), Proceedings of the NATO Advanced Research Institute on Adaptive
Control of Ill-Defined Systems (pp. 317-333). New York: Plenum Press.

Holland, J. H. (1985a). A matbematical framework for studying learning in classifier
systems (Research Memo RIS-25r). Cambridge, MA: The Rowland Institute for Science,
Holland, J. H. (1985b). Properties of the bucket brigade. Proceedings of an International
Conference on Genetic Algorithms and Their Applications, 1-7.

Holland, J. H. (1986a). Escaping brittleness: The possibilities of general purpose learning
algorithms applied to parallel rule-based systems. In R. 5. Michalski, J. G. Carbonell, & T.
M. Mitchell (Eds.), Machine Learning IT (pp. 593—623). Los Altos, CA: Morgan Kaufmann.

Bibliography 393

Holland, J. H. (1986b). A mathematical framework for studying learning classifier systems.
In D. Farmer, A. Lapedes, N. Packard, & B. Wendroff (Eds.), Evolution, games and learning
(pp. 307-317). Amsterdam: North-Holland. (Reprinted from Physica, 22D, 307-317)

Holland, J. H. (1987a). Derived Markov matrices. Unpublished manuscript.

Holland, J. H. (1987b). Genetic algorithms and classifier systems: Foundations and future
directions. Genetic algorithms and their applications: Proceedings of the Second Inter-
national Conference on Genetic Algorithms, 82—89.

Holland, J. H., & Burks, A. W. (1981). Architecture and languages for parallel computing
with classifier systems. Unpublished research proposal.

Holland, J. H., & Burks, A. W. (1985). Adaptive computing system capable of learning
and discovery [Patent application filing no. 06-619-349]. Washington, DC: U. 8. Patent
Office.

Holland, J. H., Burks, A. W., Crichton, J. W., & Finley, M. R. (1963). Machine adaptive
systems (Technical Report ORA Project 05089). Ann Arbor: University of Michigan, De-
partment of Computer and Communication Sciences.

Holland, J. H., Holyoak, K J., Nisbett, R. E., & Thagard, P R. (1986). Induction: Processes
of inference, learning and discovery. Cambridge: MIT Press.

Holland, J. H., Holyoak, K J., Nisbett, R. E,, & Thagard, P. R. (1987). Classifier systems, Q-
morphisms, and induction. In L. Davis (Ed.), Genetic algorithms and simulated anneal-
ing (pp. 116-128).

Holland,]. H., & Reitman, J. 5. (1978). Cognitive systems based on adaptive algorithms. In
D. A, Waterman & FE Hayes-Roth (Eds.), Pattern directed inference systems (pp. 313-329),
New York: Academic Press.

Hollstien, R. B. (1971). Artificial genetic adaptation in computer control systems. (Doc-
toral dissertation, University of Michigan). Dissertation Abstracts International, 32(3),
1510B. (University Microfilms No. 71-23,773)

Jog, P, & Van Gucht, D. (1987). Parallelisation of probabilistic sequential search algo-
rithms. Genetic algoritbms and their applications: Proceedings of the Second Interna-
tional Conference on Genetic Algorithms, 170—-176.

Jones, W. T., & Chiaraviglio, L. (1979). Is science an adaptive system? Bebavioral Science
24(5), 325-333.

Kampfner, R. R. (1981). Computational modeling of evolutionary learning. Unpublished
doctoral dissertation, University of Michigan, Ann Arbor.

Karg, R L, & Thompson, G. L (1964). A heuristic approach to solving traveling salesman
problems. Management Science, 10{2), 225-248.

Katz, J. L. (1985). Artificial intelligence research at Mitre. Af Magazine 6(3), 228-232.
Kauffman, S. A, & Smith, R. G. (1986). Adaptive automata based on Darwinian selection.
In D. Farmer, A. Lapedes, N. Packard, & B. Wendroff (Eds.), Evolution, games and learning
(pp. 68-82). Amsterdam: North-Holland. (Reprinted from Physica, 22D, 68-82)

Khoogar, A. R. (1987, November). Genetic algorithm solutions for inverse robot kine-
matics. Paper presented at the 1987 University of Alabama ACM Student Conference, Bir-
mingham, AL

Kirkpatrick, 5., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), G71-680.

394

Bibliography

Klopf, A. H. (1965). Evolutionary pattern recognition systems (Technical Report). Chi-
cago: University of lllinois, Information Engineering Department, Bioengineering Section.
Knuth, D. E. (1981). The Art of Computer Programming (2nd ed., vol. 2). Reading, MA:
Addison-Wesley.

Kuchinski, M. J. (1985). Battle management systems control rule optimization using
artificial intelligence (Technical Report No. NSWC MP 84-329). Dahlgren, VA: Naval Sur-
face Weapons Center.

Lawler, E. L. (1976). Combinatorial optimization: Networks and matroids. New York:
Holt, Rinehart and Winston.

Liepins, G. E, & Hilliard, M. R. (1986a, October). Generic algorithms and nationally
advertised brand algoritbms—can the dumb machines learn to discriminate. Paper pre-
sented at The International Symposium on Methodologies for Intelligent Systems, Knox-
ville, TN.

Liepins, G. E., & Hilliard, M. R. (1986b, October). Genetic algorithms as a paradigm for
machine learning Paper presented at the ORSA/TIMS Joint National Meeting, Miami, FL.
Liepins, G, E, Hilliard, M. R., Palmer, M., & Morrow, M. (1987). Greedy genetics. Genetic
algorithms and their applications: Proceedings of the Second International Conference
on Genetic Algorithms, 90-99.

Lindsay, R. K. (1985). Artificial intelligence research at the University of Michigan. Al Mag-
azine, 6{2), 64-72.

MacLaren, L. (1981). Tuesday evening satellite session. In J. R. Sampson (Ed.), A Synopsis
of the Fifth Annual Ann Arbor Adaptive Systems Workshop, (pp. 87-91). Ann Arbor:
University of Michigan, Department of Computer and Communications Sciences, Logic of
Computers Group.

Martin, FE G., & Cockerham, C. C. (1960). High speed selection studies. In O. Kempthorne
(Ed.), Biometrical genetics (pp. 35-45). London: Pergamon Press.

Martin, N. (1973). Convergence properties of a class of probabilistic adaptive schemes
called sequential reproductive plans. (Doctoral dissertation, University of Michigan), Dis-
sertation Abstracts International, 34(8), 3746B-3747B. (University Microfilms No. 74-
3685)

Martinez, H. M. (1979). An automaton analogue of unicellularity. Biosystems, 11, 133~
162.

Mauldin, M. L. (1984). Maintaining diversity in genetic search. Proceedings of the National
Conference on Artificial Intelligence, 247-250.

Mercer, R. E. (1977). Adaptive search using a reproductive meta-plan. Unpublished mas-
ter's thesis, University of Alberta, Edmonton.

Mercer, R. E, & Sampson,]. R. (1978). Adaptive search using a reproductive meta-plan.
Kybernetes, 7, 215-228.

Minga, A. K. (19806, April). Genetic algorithms in aerospace design. Paper presented at
the AIAA Southeastern Regional Student Conference, Huntsville, AL

Minga, A. K. (1987, April). Honeycomb design using a genetic algorithm. Paper presented
at the AIAA Southeastern Regional Student Conference, Atlanta, GA.

Minsky, M. L. (1967). Computation: Finite and infinite machines Englewood Cliffs, NJ:
Prentice-Hall

Bibliography 395

Nelder, J. A, & Mead, R (1965). A simplex method for function minimization. Computer
Journal, 7, 308-313.

Oliver, . M., Smith, D. J., & Holland, J. R. C. (1987). A study of permutation crossover
operators on the traveling salesman problem. Genetic algorithms and their applications:
Proceedings of the Second International Conference on Genetic Algorithms, 224-230,
Oosthuizen, D. G. (1987). SUPERGRAN: A connectionist approach to learning, integrating
genetic algorithms and graph induction. Genetic algoritbms and their applications: Pro-
ceedings of the Second International Conference on Genetic Algorithms, 132-139,
Papoulis, A. (1984). Probability, random variables, and stochastic processes (2nd ed.),
New York: McGraw-Hill.

Perry, Z. A. (1984). Experimental study of speciation in ecological niche theory using
genetic algorithms. (Doctoral dissertation, University of Michigan). Dissertation Abstracts
International, 45(12), 3870B. (University Microfilms No. 8502912)

Pettit, E., & Swigger, K. M. (1983). An analysis of genetic-based pattern tracking and cog-
nitive-based component tracking models of adaptation. Proceedings of the National Con-
ference on Artificial Intelligence, 327-332.

Pettey, C. B, Leuze, M. R, & Grefenstette,], J. (1987). A parallel genetic algorithm. Genetic
algorithms and their applications: Proceedings of the Second International Conference
on Genetic Algorithms, 155-161.

Pike, M. C. (1980). Algorithm 267 random normal deviate [G5]. In, Collected algorithms
from ACM, I, 267. New York: Association for Computing Machinery.

Post, E. L. (1943). Formal reductions of the general combinatorial decision problem.
American Journal of Mathbematics, 65, 197-268.

Rada, R. (1981a). Evolution and gradualness. BioSystems, 14, 211-218.

Rada, R. (1981b). Evolutionary structure and search (Doctoral dissertation, University of
lllinois). Dissertation Abstracts International, 42, 690-B.

Rada, R. (1984a). Automating knowledge acquisition. In R. Forsyth (Ed.), Expert systems:
Principles and case studies (pp. 190-210). New York: Chapman and Hall.

Rada, R. (1984b). Probabilities and predicates in knowledge refinement. Proceedings of
the IEEE Worksbop on Principles of Knowledge-based Systems, 123—128.

Rada, R. (1985). Gradualness facilitates knowledge refinement. J/EEE Transactions on Pai-
tern Analysis and Machine Intellegence, PAMI-7(5), 523-530.

Rada, R., Rhine, Y., & Smailwood, J. (1984). Rule refinement. Proceedings of the Society of
Computer Applications in Medical Care, 62—65.

Radcliffe, A. (1981). A problem solving technique based on genetics. Creative Computing,
3(2), 78-81.

Raghavan, V. V., & Agarwal, B. (1987). Optimal determination of user-oriented clusters: An
application for the reproductive plan. Genetic algorithms and their applications: Pro-
ceedings of the Second International Conference on Genetic Algorithms, 241-246.
Raghavan, V. V., & Birchard, K (1979). A clustering strategy based on a formalism of the
reproductive processes in natural systems. Proceedings of the Second International Con-
ference on Information Storage and Retrieval, 14(2), 10-22.

Rechenberg, I. (1965, August). Cybernetic solution path of an experimental problem

396

Bibliography

(Royal Aircraft Establishment Translation No. 1122, B. F Toms, Trans.). Farnborough Hants:
Ministry of Aviation, Royal Aircraft Establishment.

Rechenberg, I. (1973), Evolutionstrategie |Evolution Strategy] Stuttgart: Frommann-
Holzboog.

Rechenberg, L. (1986, July), Literaturnachweis zur Evolutionstrategie | Bibliography for
the Evolution Strategy]. Unpublished manuscript, Technische Universitat Berlin, Fachge-
biet Bionik und Evolutionstechnik, Berlin.

Reed,], Toombs, R, & Barricelli, N. A. (1967). Simulation of biological evolution and
machine learning Journal of Theoretical Biology, 17, 319-342.

Reiter, C. (1986). Toy universes. Science 86, 7(5), 55-59.

Rendell, L. A. (1983a). A doubly layered, genetic penetrance learning system. Proceedings
of the National Conference on Artificial Intelligence 343-347.

Rendell, L. A. (1983b). A new basis for state space learning systems and a successful im-
plementation. Artificial Intelligence, 20, 369-392.

Rendell, L. A. (1985). Genetic plans and the probabilistic learning system: Synthesis and
results. Proceedings of an International Conference on Genetic Algorithms and Their
Applications, 60-73.

Reynolds, R. G. (1975). Towards an extended theory of adaptation. Unpublished
manuscript.

Reynolds, R G. (1979). An adaptive compniter model of the evolution of agriculture for
hunter-gatherers in the valley of Oaxaca, Mexico Unpublished doctoral dissertation, Uni-
versity of Michigan, Ann Arbor.

Reynolds, R. G. (1986). An adaptive computer model for the evolution of plant collecting
and early agriculture in the eastern valley of Oaxaca. In K. V. Flannery (Ed.), Guila Na-
quitz: Archaic foraging and early agriculture in Oaxaca, Mexico (pp. 439-500). New
York: Academic Press.

Riolo, R. L. (1986a). CFS-C: A package of domain independent subroutines for imple-
menting classifier systems in arbitrary user-defined environments (Technical Report).
Ann Arbor: University of Michigan, Logic of Computers Group.

Riolo, R. L (1986b). LETSEQ: An implementation of the CF5-C classifier system in a task-
domain that involves learning fo predict letter sequences (Technical Report). Ann Arbor:
University of Michigan, Logic of Computers Group.

Riolo, R. L. (1987a). Bucket brigade performance: . Long sequences of classifiers. Genetic
algorithms and their applications: Proceedings of the Second International Conference
on Genetic Algorithms, 184-195.

Riolo, R. L. (1987b). Bucket brigade performance: [I. Default hierarchies. Genetic algo-
rithms and their applications: Proceedings of the Second International Conference on
Genetic Algorithms, 196-201.

Robertson, G. G. (1986). [Lisp version of classifier system program for execution on the
Connection Machine|.

Robertson, G. G. (1987a). Parallel implementation of genetic algorithms in a classifier
system. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 129-140).
London: Pitman,

Robertson, G. G. (1987b). Parallel implementation of genetic algorithms in a classifier

. System. Genelic algorithms and their applications: Proceedings of the Second Interna-

tional Conference on Genetic Algoritbms, 140-147.

Bibliography 397

Rosenberg, R. S. (1966). A computer simulation of a biological population. Unpublished
manuscript.

Rosenberg, R. S. (1967). Simulation of genetic populations with biochemical properties,
(Doctoral dissertation, University of Michigan). Dissertation Abstracts International,
28(7), 2732B. (University Microfilms No. 67-17,836)

Rosenberg, R. 5. (1970a). Simulation of genetic populations with biochemical properties:
I. The model. Mathematical Biosciences, 7, 223-257.

Rosenberg, R. 8. (1970b). Simulation of genetic populations with biochemical properties:
I1. Selection of crossover probabilitics. Mathematical Biosciences, 8, 1-37.

Rosmaita, B.). (1985a). Exodus: An extension of the genetic algorithm to problems deal-
ing with permutations. Unpublished master’s thesis, Vanderbilt University, Nashville, TN.
Rosmaita, B. J. (1985b). EXODUS user’s manual (version 1.8) (Technical Report CS-85-
06). Nashville: Vanderbilt University, Department of Computer Science.

Ross, 5. (1976). A first course in probability New York: Macmillan.

Sampson, J. R. (1978). [Summary of the Third Annual Adaptive Systems Workshop, Ann
Arbor]. Unpublished manuscript.

Sampson, J. R. (1979). [Summary of the Fourth Annual Adaptive Systems Workshop, Ann
Arbor]. Unpublished manuscript.

Sampson, . R. (1981a). [Summary of the Sixth Annual Adaptive Systems Workshop, Ann
Arbor). Unpublished manuscript.

Sampson, J. R. (1981b). A Synopsis of the Fifth Annual Ann Arbor Adaptive Systems
Workshop. Ann Arbor: University of Michigan, Department of Computer and Communi-
cation Sciences, Logic of Computers Group.

Sampson,). R. (1984). Biological information processing New York: John Wiley.
Sampson, J. R, & Brindle, A. (1979). Genetic algorithms for function optimization. Pro-
ceedings of the Ninth Manitoba Conference on Numerical Mathematics and Computing,
3147,

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3), 210-229.

Sannier, A. V., II, & Goodman, E. D. (1987). Genetic learning procedures in distributed
environments. Genetic algorithms and their applications: Proceedings of the Second In-
ternational Conference on Genetic Algoritbms, 162-169.

Schaffer, . D. (1984). Some experiments in machine learning using vector evaluated
genetic algorithms. Unpublished doctoral dissertation, Vanderbilt University, Nashville,
Schaffer,]. D. (1985a). Learning multiclass pattern discrimi- nation. Proceedings of an
International Conference on Genetic Algorithms and Their Applications, 74=79.
Schaffer, J. D. (1985b). Multiple objective optimization with vector evaluated genetic al-
gorithms. Proceedings of an International Conference on Genetic Algorithms and Their
Applications, 93—100.

Schaffer, J. D. (1987). Some effects of selection procedures on hyperplane sampling by
genetic algorithms. In L. Davis (Ed.), Genetic algorithms and simulated ennealing (pp.
89-103). London: Pitman.

Schaffer, J. D., & Grefenstette,]. J. (1985). Multi-objective learning via genetic algorithms,
Proceedings of the 9th International Joint Conference on Artificial Intelligence, I, 593—
595.

398

Bibliography

Schaffer, J. D., & Morishima, A. (1987). An adaptive crossover distribution mechanism for
genetic algorithms. Genetic algorithms and their applications: Proceedings of the Second
International Conference on Genetic Algorithms, 36-40.

Schrodt, P A. (1986a). Predicting international events. Byre, 11(12), 177-192,
Schrodt, P. A. (1986b, March). Set prediction of international bebavior using a Holland

classifier. Paper presented at the 1986 meeting of the International Studies Association,
Anaheim, CA.

Schrodt, P. A. (1987). Pattern matching, set prediction, and foreign policy analysis. [n 8. J.
Cimbala (Ed.), Artificial intelligence and national security (pp. 89-107). Lexington: Lex-
ington Books.

Schwefel, H. (1981). Numerical optimization of computer models (M. Finnis, Trans.).
Chichester: John Wiley. (Original work published 1977).

Segrest, P. D. (1987). GAS genetic annealing simulation for combinatorial optimization,
Unpublished manuscript, University of Alabama, Tuscaloosa.

Shaefer, C. G. (1985a). Comparisons of methods for solving nonlinear equations (Re-
search Memo RIS-24r). Cambridge, MA: Rowland Institute for Science.

Shaefer, C. G. (1985b). Directed trees method for fitting a potential function. Proceedings
of an International Conference on Genetic Algorithms and Their Applications, 207-225,

Shaefer, C. G. (1987). The ARGOT strategy: Adaptive representation genetic optimizer
technique. Genetic algorithms and their applications: Proceedings of the Second Inter-
national Conference on Genetic Algorithms, 50-58.

Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: MIT Press.

Sirag, D. J., & Weisser, D. J. (1987). Toward a unified thermodynamic genetic operator.
Genetic algorithms and their applications: Proceedings of the Second International Con-
Sference on Genetic Algorithms, 116—122.

Slagle, J. R., & Hamburger, H. (1985). An expert system for a resource allocation problem,
Communications of the ACM, 28(9), 994-1004.

Smith, D. (1985). Bin packing with adaptive search. Proceedings of an International Con-
Jference on Genetic Algorithms and Their Applications, 202-206.

Smith, R. E. (1987). Diploid genetic algorithms for search in time varying environments,
Proceedings of the 25th Annual Southeast Regional Conference of the ACM, 175-178.
Smith, R. E. (1988). An investigation of diploid genetic algorithms for adaptive search
of nonstationary functions. Unpublished master's thesis, University of Alabama,
Tuscaloosa.

Smith. 8. F (1980). A learning system based on genetic adaptive algorithms. Unpublished
doctoral dissertation, University of Pittsburgh.

Smith, S. E (1983). Flexible learning of problem solving heuristics through adaptive search.
Proceedings of the 8th International Joint Conference on Artificial Intelligence, 422—
425.

Smith, 8. E (1984). Adaptive learning systems. In R. Forsyth (Ed.), Expert systems: Prin-
ciples and case studies (pp. 169-189). New York: Chapman and Hall.

Smith, T, & De Jong, K. A. (1981). Genetic algorithms applied to the calibration of infor-
mation driven models of US migration patterns. Proceedings of the 12th Annual Pitls-
burgh Conference on Modelling and Simulation, 955-959.

Bibliography 399

Spendley, W., Hext, G. R., & Himsworth, E R (1962). Sequential applications of simplex
designs in optimization and evolutionary operation. Technometrics, 4, 441-461,
Stackhouse, C. P, & Zeigler, B. P. (in press). Learning plateaus in an adaptive rule-based
system. In M. Elzas, T. Oren, & B. P. Zeigler (Eds.), Modelling and simulation method-
ology: Knowledge systems paradigms. Amsterdam: North-Holland,

Stadnyk, 1. (1987). Schema recombination in pattern recognition problems. Genetic al-
gorithms and their applications: Proceedings of the Second International Conference on
Genetic Algorithms, 27-35,

Syslo, M. M., Deo, N., & Kowalik, J. 8. (1983). Discrete optimization algoritbms with
Pascal programs. Englewood Cliffs, NJ: Prentice-Hall.

Suh, J. Y., & Van Gucht, D. (1987). Incorporating heuristic information into genetic search,
Genetic algorithnis and their applications: Proceedings of the Second International Con-
Sference on Genetic Aigorithms, 100-107.

Suh, . Y., & Van Gucht, D. (1987, July). Distributed genetic algorithms (Technical Report
No. 225). Bloomington: Indiana University, Computer Science Department.

Takahashi, Y., Rabins, M. J., & Auslander, D. M. (1970). Conirol and dynamic systems.
Reading, MA: Addison-Wesley.

Tanese, R. (1987). Parallel genetic algorithms for a hypercube. Genetic algoritbms and
their applications: Proceedings of the Second International Conference on Genetic Al-
gorithms, 177-183.

Thompson, B., & Thompson, B. (1986). Evolving knowledge from data. Computer Lan-
guage, 3(11), 23-26.

Uhr, L., & Vossler, C. (1961). A pattern recognition program that generates evaluates and
adjusts its own operators. Annals of the New York Academy of Science, 50(189), 555-
569,

Ulam, S., & Schrandt, R. (1986). Some elementary attempts at numerical modeling of prob-
lems concerning rates of evolutionary processes. In D. Farmer, A. Lapedes, N, Packard, &
B. Wendroff (Eds.), Fvolution, games and learning (pp. 4—12). Amsterdam: North-Hol-
land. (Reprinted from Physica, 22D, 4—12).

Valenzuela-Rendon, M. (1986). A computer architecture for genetic algoritbms or the
parallel bierarchic genetic algorithm. Unpublished manuscript.

Vincent, T. L., & Grantham, W.]. (1981). Optimality in parameteric systems. New York:
Wiley.

von Neumann,). (1966). Theory of self-reproducing automata (Edited and completed by
A. W. Burks). Urbana: University of lllinois Press.

Waterman, D. A. (1968). Machine learning beuristics (Doctoral dissertation, Stanford Uni-
versity Report No. C5118, AL 74). Stanford, CA: Stanford University, Department of Com-
puter Science.

Weinberg, R. (1970). Computer simulation of a living cell (Doctoral dissertation, Univer-
sity of Michigan). Dissertations Abstracts International, 31(9), 5312B. (University Micro-
films No. 71-4766)

Westerdale, T. H. (1974). An application of Fisher’s theorem on natural selection to some
re-enforcement algorithms for choice strategies. Journal of Cybernetics, 4, 31-42.
Westerdale, T. H. (1985). The bucket brigade is not genetic. Proceedings of an Interna-
tional Conference on Genetic Algorithms and Their Applications, 45-59.

400

Bibliography

Westerdale, T. H. (1986). A reward scheme for production systems with overlapping con-
flict sets. JEEE Transactions on Systems, Man, and Cybernetics, SMC-16(3), 369-383.
Westerdale, T. H. (1987). Altruisim in the bucket brigade. Genetic algorithms and their
applications: Proceedings of the Second International Conference on Genetic Algo-
rithms, 22-25,

Wetzel, A. (1983). Fvaluation of the effectiveness of genetic algorithms in combinatorial
optimization. Unpublished manuscript, University of Pittsburgh, Pittsburgh.

What the brain builders have in mind. (1987, May 2). The Economist, pp. 94-96.
Whitley, D. (1987). Using reproductive evaluation to improve genetic search and heuristic

discovery. Genetic algorithms and their applications: Proceedings of the Second Inter-
national Conference on Genetic Algoritbms, 108115,

Wilson, S. W. (1981). Aubert processing and intelligent vision (Technical report). Cam-
bridge, MA: Polaroid Corportation.

Wilson, 5. W. (1983). On the retino-cortical mapping. International Journal of Man-Ma-
chine Studies, 18, 3G1-389.

Wilson, 8. W. (1985a). Adaptive “cortical” pattern recognition. Proceedings of an Inter-
national Conference on Genetic Algorithms and Their Applications, 188-196,

Wilson, 5. W. (1985b). Knowledge growth in an artificial animal. Proceedings of an Inter-
national Conference on Genetic Algoritbms and Their Applications, 16-23,

Wilson, S. W. { 1985c). Knowledge growth in an artificial animal. Proceedings of the <th
Yale Workshop on Applications of Adaptive Systems Theory, 98—104.

Wilson, S. W. (1986a). Classifier system learning of a boolean function (Research Memo
RIS-27r). Cambridge, MA: Rowland Institute for Science.

Wilson, S. W. (1986b). Classifier systems and the Animat problem (Research Memo RIS-
36r). Cambridge, MA: Rowland Institute for Science.

Wilson, 5. W. (1986c¢). Hierarchical credit allocation in a classifier system (Research
Memo RIS-37r). Cambridge, MA: Rowland Institute for Science.

Wilson, 5. W. (1986d). Knowledge growth in an artificial animal. In K. 5. Narendra (Ed.),
Adaptive and learning systems: Theory and applications (pp. 255-264). New York:
Plenum Press.

Wilson, 8. W. (1987a). Classifier systems and the Animat problem. Machine Learning, 2(3),
199-228.

Wilson, §. W. (1987b). The genetic algorithm and biological development. Genetic algo-
rithms and their applications: Proceedings of the Second International Conference on
Genetic Algorithms, 247-251.

Wilson, 5. W. (1987c). Hierarchical credit allocation in a classifier system. In L. Davis,
Genetic algorithms and simulated annealing (pp. 104—115). London: Pitman.

Wilson, S. W. (1987d). Hierarchical credit allocation in a classifier system. Proceedings of
the Tenth International Joint Conference on Artificial Intelligence, 217-220.

Wilson, S. W. (1987¢). Quasi-Darwinian learning in a classifier system. Proceedings of the
Fourth International Worksbop on Machine Learning, 59—65.

Wilson, S. W. (in press). Hierarchical credit allocation in a classifier system. In M. Elzas, T.
Oren, & B. P. Zeigler (Eds.), Modelling and simulation methodology: Knowledge systems
paradigms Amsterdam: North-Holland.

Bibliography 401

Wong, P. J., & Larson, R. E. (1968). Optimization of natural gas pipeline systems via dy-
namic programming. /EEE Transactions of Automatic Control, AC-13(5), 475-481.
Zeigler, B. P, Bosworth, J. L., & Bethke, A. D. (1973). Noisy function optimization by
genetic algorithms (Technical Report No. 143). Ann Arbor: University of Michigan, De-
partment of Computer and Communication Sciences.

Zhou, H. (1985). Classifier systems with long term memory. Proceedings of an Interna-
tional Conference on Genetic Algoritbms and Their Applications, 178—182.

Zhou, H. (1986). Conceptual learning by building finite automata from examples via
genetic algorithm. Manuscript submitted for publication.

INDEX

#; see Wild card symbol
*; see Don't care symbaol

a, 230
Abeyance, 148-165
accum, 67
action, 230
Action set, 286
Adaptation in Natural and Artificial
Systems, 2, 106, 264
Adaptive systems theory, 90, 92
address, 240
advance, 243
Airfoil optimization, 104
Aliasing, 123
allele, 60, 162
Allele
correspondence to string position
value, 21
definition of, 21
dominant, 149
recessive, 149
Anandan, P, 238, 293
ANAS; see Adaptation in Natural and
Artificial Systems
Anderson, C. W., 238, 293
ANIMAT, 285-288
innovations in, 286
results, 287-288
time-to-payoff estimation, 287
aoc, 233234, 243
AOC; see Apportionment of credit
system

Apportionment of credit system, 221,
225-229
analogy to service economy, 222,
225
currency, introduction of a, 222
example of payments, 226—-227
in Pascal, 233-236
stability of, 228
Approximate function evaluation, 206—
208
A-schemata; see Schema
auction, 233-234, 236
Auction, 225
noisy, 226
Auslander, D. M., 228
avg, 62
Avriel, M., 202
Axelrod, R., 140142

Bagley, J. D, 42, 92-93, 123, 150-151,
167-168, 264
Baker, J. E., 124-125
Baricelli, N. A, 89
Barto, A. G., 238, 293
Beightler, C. 8., 6
Bellman, R., 5
Berry, R.], 150
Bethke, A. D, 42, 170, 202, 208
bid, 230, 234
Bid
competition, 222
definition of, 225
effective, 226

Index

Bid, continued
factoring specificity into, 234
as geometrically weighted average of
receipts, 229
structure to promote default
hierarchies, 252254
bidl, 234, 252
bid2, 234, 252
bidsigma, 234
bidtax, 236
Biochemistry simulation, 94
bit, 230-231
Black box problem, 7-8, 15
Bledsoe, W. W., 95, 104, 261
Blind search, 9, 201
Bonomi, E., 205
Booker, L. B, 71, 121, 123, 195-197,
225, 276-279, 285, 287
BOOLE, 293-295
differences with ANIMAT, 293
population entropy measure used in,
203
Bosworth, J., 102, 202, 204
Bowen, D., 196
Box, G. E P, 103-104
Brachman, R. J., 296
Brainerd, W. S., 301
Braitenberg, V., 264
Breeding, 99-100, 192, 195
Bremermann, H. J., 104, 262
Brent, R. P, 120
Bridges, C. L, 51
Brindle, A, 121, 123, 153—154
Broadcast language, 218, 264-265
Broadcast units, 218
Browning, L, 95
Bucket brigade algorithm, 219, 225—
229
implicit, 236, 287
bucketbrigadeflag, 234235
Building block, 20, 41
hypothesis, 18, 41-45
misleading, 45
Burks, A. W, 268

¢ 230

Cavicchio, D.], 95-97, 119, 168-169,
180181, 190, 264

chid, 234

Cell simulation, 9395, 9899

cfile 232

child, 238

childi, 64—65

child2, 64—65

chromosome, 60, 6667
Chromosome
correspondence to string, 21-22
multiple numbers in genotype, 179
180
pairs of; see Diploidy
classarray, 230
Classifier systems, 217, 221-230
cognitive science, connections to,
276-277
connectionism, connections to,
278
fixed-length rule restriction, 221
mating restriction in, 278
mental maps in, 288
parallel rule activation, 222
in Pascal, 243245
symbolic artificial intelligence,
connections to, 296
classifieroutput, 240
Classifiers, 219, 223-224, 230, 238,
266
classlist, 231
classtype, 230
clearinghouse, 233-234, 236
Clearinghouse, 225, 233-236
clearingrec, 233
clist, 231-232
CL-ONE, 296301
Cockerham, C. C., 89
Codings, 80-84
allele names carried with, 166167
binary codes, advantage of, B0—82
binary switching, 80
concatentation of, 82-83
Gray versus binary, 100
messy, 181
minimalist versus maximalist
controversy, 102
multiparameter, 82—84, 134
permutation, 170
principles of, 80
real genes, 98, 102-103
unsigned binary integer, 80
coeff, 67
Cognitive System One; see C5-1
Community model, 210-211
Complement operator, partial, 102
Complex logarithmic mapping, 282
condition, 230
Conditions, 218, 224
Connectionism, 278
Constraints, 85-86
Control systems, 99

Index

Coombs, 5., 311
Cooperation, 182-184
Cramer, N. L., 301, 303
Create operator, 286—-287
crecord, 233
crossover, 64, 66
Crossover, 10
adaptive, 94, 293, 295
checkerboard, 285
cycle, 170, 175
effect on schema survival, 31-32
example of, 12, 17
generalized; see Crossover, multiple-
point
knowledge-augmented, 204-206
multiple-point, 102, 116, 119-120
between nonhomologous strings,
167-168
order, 170, 174
partially matched, 170-174, 177
partially matched in Pascal, 172
probability of, 71, 111
probability, coded within string, 196
on ring structure, 119
simple, 12
simple, in Pascal, 64
tree-based, 303
on variable length structures, 273—
274
crowding, 238
Crowding, 116, 118, 190
in a classifier system, 229, 238
in a classifier system in Pascal, 239
crowdingfactor, 236-238
crowdingsubpop, 238
C5-1, 218-219, 265-270, 277, 282,
285
classifier syntax, 266
combination of needs, 267
comparison to LS-1, 270-271
epochal algorithm, 267
maze task results, 268-270
roulette wheel use for rule selection,
267
seven-node maze, 268-2069
thirteen-node maze, 268-270
CX; see Crossover, cycle
Cycle crossover; see Crossover, cycle

Davis, L. D., 5, 170, 174, 311

Davis, R., 221

De Jong, K. A, 71, 96, 102, 106-121,
123, 190, 199, 229, 264

Deception conditions, 46—47

405

decode, 67, 240
decode__parms, B4
Decoding routines in Pascal, 83
Default hierarchy, 247
enlargement of the solution set, 251
example of, 249, 252
parsimony of, 250-251
SCS results, 253—-254
Defining length, 24, 29
effect on schema survival, 32
Deletion, 180-181
Deo, N., 202
detectors, 241, 243
Detectors, 21, 223
binary, 28
in Pascal, 240242
selection by genetic algorithm, 95
self-modification of, 218
values of, 21
DFP, 120
Digital subtraction angiography, 138
Diploidy, 148-165
analysis of, 157-161
in Pascal, 162-165
Discretization of functionals, 84-85
Distributed asynchronous concurrent
genetic algorithm, 208-209
Diversity maintenance, 96, 102
dominance, 162-163
Dominance, 148—-1065
analysis of, 157-161
effect on mutation rate, 161
in genetic algorithms, 150157
intrachromosomal, 180
in Pascal, 162-165
Domination, 198—-199
Don't care symbol, 19
Duplication, 180-181
Dynamic programming, 5

ebid, 230, 234
ebidl, 234, 252
ebid2 234, 252
effector, 242243
Effectors, 223
internal, 218
in Pascal, 240242
self-modification of, 218
efile, 232
Elitism, 115
environment, 240, 243
environrec, 240
envmessage, 231, 241
Epistasis, 22, 47, 169-170

406

Index

Epistasis, continued
Fraser’s function, 90-91
Epochal algorithm, 219, 267
erecord, 240
Evolutionary operation, 103—-104
Evolutionary optimization, 105-106
Evolutionary programming, 105-106
Evolutionstrategie 104-105
Exponential form, 30
Exterior penalty method, 85
extract__parm, 84
EYE-EYE system, 279, 282-285
retina-to-cortex mapping, 282
rwo-dimensional structures, 285

Features, 21, 28
Fertilization, 162—165

Finite-state machine learning task, 105—

106
Fisher, R. A., 150
Jitness, 60, 79
Fitness, 10
as function of allele value and
ordering, 171
shared, 192
as tautology in nature, 76
see also Objective function
Fitzpatrick, J. M., 138-139, 206-207,
311
Fletcher, R., 120
Jup, 6365, 240
fmultiple, 78
Fogel, L. J., 105-106
Foo, N., 102, 202, 204
Food and poison learner, 276-279
environment, 279-280
separation of perception and affect
classifiers, 277
results, 279, 281
Forrest, §., 123—124, 140, 224, 299-
301
Frames, 297
Frantz, D. R., 101-102, 169-170, 175—
176, 264
Fraser, A. §., 89-91
Friedberg, R. M., 92
Friedman, G. J., 104, 262
Function
approximate evalution of, 206208
bitwise linear, 47
De Jong's testbed, 107-110
epistatic, 47
linearization, 207—208

multimodal, 3—4, 185186, 188
noisy, 3
Function optimization, 99-101, 106—
120
nonstationary, 154-157
Fundamental theorem of genetic
algorithms, 33

G; see Generation gap
ga, 2306, 238, 243
GA; see Genetic algorithms
GA-deceptive problems, 45-46, 101-
102
gaflag, 243
GA-hard problems, 46
gametogenesis, 162-104
garecord, 236
Gas pipeline control task, 289, 290-
292
Gas pipeline optimization, 125, 130
135
G-bit improvement, 202-204
GBML; see Genetics-based machine
learning
Gelatt, C. D, 205
gen, 61, 68
Gene
correspondence to a detector, 21
definition of, 21
expression, 149
generatesignal, 240
generation, 66, 68
diploid scheme revisions, 164
Generation gap, 111
GENESIS, 199
Genetic algorithms, 1-25
applications list, 125-129
avoidance of centralized control, 97,
98-99
within a classifier system, 219, 229,
236-238
differences compared to
conventional methods, 7-10
first appearance of words, 92
fundamental theorem of, 33
geography, imposition of, 121
hand calculation, 15-18
history of, 89—103, 106—120
ideas-notions framework, 13—14
innovation generating capability, 14
insensitivity to noise, 138-139
mathematical foundations, 2, 28—54
mechanics of, 10—14

Index

overlapping populations in a
classifier system, 229
parallel, 208-212
parameter codings, use of, 7-9
in Pascal, 59-75
payoff usage, 7
probabilistic operator usage, 7
self-adapration, 93, 96-97, 196
terminology of, 21-22
vector-evaluated, 199
Genetics, early digital simulations of,
B9-90
Genetics-based machine learning, 217—
256, 261-303
applications list, 219-220
history of, 218-219, 221, 261-292
Genotype, 21
Geometric progression, 30
gfile 232
Gillies, A. M., 124
Goldberg, D. E., 40, 46, 51, 125, 130-

137, 154-157, 159-160, 170- 171,

177, 179, 191-192, 202, 210-211,
224, 288

Gopal, R., 204-206

Graham, W. J., 199

Gray code, 100-101

grecord, 236

Greedy optimization, 202

Grefenstette, J. J., 42, 71, 99, 138-139,
199, 204-209, 212, 311

Grosso, P B, 191

Hadamard, J., 13

balt, 243

Hamming space, 46

Haploidy, 148

Heterotic, multiplicative functions, 191

Heterozygote, 149

Hexapawn, 92-93

Hext, G. R, 104

Hill-climbing, 3
comparison to genetic algorithms,
120

Himsworth, F. R, 104

Hofstadter, D. R, 27

Holland, J. H., 1-2, 19, 37-38, 42, 90,
92, 106, 152, 161, 170, 176, 179—
180, 186, 196, 208, 218, 225, 247,
251, 262, 264-265, 268, 274, 277-
278, 282, 289, 305, 309

Holland, J. R. C., 174-175

Hollstien, R. B., 99-101, 107, 151-153,

407

180, 192, 195, 264,
Hollstien-Holland triallelic scheme, 152
Holyoak, K.)., 251, 270, 309
Homozygote, 149
Hunting-nurturing analysis, 182—184
Hybrid methods, 202-204

with calculus-based techniques, 202
with greedy techniques, 202
in parallel, 202-203

Ideas-notions framework, 17, 201
Image processing, 95-97, 138-139
Implicit parallelism, 20, 40
Include files, 243
individual, 60, 79
Inertial object control task, 289-290
initialization, 243
initialize, 68
Intersection operator, partial, 286-287
Invariance mappings, 282
Inversion, 166-170
disruption probability, 176-177
homology rules, 169
in LS-1, 273-275
probability of, 169
shadow, 176
see also Reordering operators
lterative circuit computers, 208, 262

Jack-of-all-trades loss, 182-183
Jacobian inheritance, 208

JB, 301-303

Jog P, 212

Karg, R. L, 172
K-armed bandit, 28, 3641
counting arguments, 39
history in relation to genetic
algorithms, 92
with sharing, 188
see also; Two-armed bandit
Kettlewell, H. B. D., 150
King, J., 221
Kirkpatrick, S., 205
KL-ONE, 296-299
Knapsack problem, 154-157
Knowledge-augmented operators, 204—
206
Knowledge-based methods, 201-208
Kowalik, J. 5., 202

Landweber, L. H., 301
Larson, R. E., 125, 130-131, 134

408

Index

Lawler, E. L., 202
laddress, 240
Ichrom, 61, 64-65, 67, 72
ldata, 240
Leuze, M. R., 212
lifetax, 236
Lingle, R, 170171, 177, 179
Linkage, 101
factors, 94
removing unnecessary, 179-180
searching for tighther, 166
Locus, 21
Isignal, 240
LS-1, 270-276
crossover on variable-length
structures, 274
description of inference engine, 271-
273
genetic operators in, 273-274
inversion use, 273-274
in maze-running task, 274-275
rule sets as object of evaluation,
270-271
Lutton, J. L., 205

Machine learning
as search, 142
see also Genetics-based machine
learning
map__parm, B4
mapdominance, 162-163
Mapping
of images, 138-139
objective functions to fitness
functions, 75-76
strings to integers to parameters, 82—
83
variance dependent, 76
marray, 236
Marriage restriction; see Mating,
restriction
Martin, F. G., 89
match, 232-233, 238
Match score, 278
Match set, 286
matchclassifiers, 232-233, 243
matchcount, 238
malchflag 230, 232
Matching section, 171, 174
matchlist, 231-232, 234
matchmax, 238
matel, 66, 236
mate2, 66, 236

mating, 236
Mating, 100-101
homology rules for inversion, 169
restriction, 188189, 192-197, 278
rules of, 196
tags, 196-197
templates, 195-197
max, 62
maxgen, 61
maxparm, 84
maxpop, 60
maxstring, 60
Maze-learning task, 266
MDP; see Minimal deceptive problem
Mead, R., 104
Measures of performance, 107, 110
Mendel, G., 148
Mental maps, 288
Mercer, R. E,, 99
message, 231
Messages, 223224
Message list, 223
Micro-level operators, 179-184
Migration, 102
min, 62
Minga, A. K., 136
Minimal deceptive problem, 46-52,
179
minparm, 84
Minsky, M. L., 221, 264
Monkey wrench rules, 246
mortl, 236, 238
mort2, 236, 238
Moth, peppered, 149-150
Multicriteria optimization, see
Multiobjective optimization
Multimodal functions; see Functions,
multimodal
Multiobjective optimization, 94, 197-
201
Multiplexer learning task
default hierarchy example, 249
function, 230
in Pascal, 238-241
perfect rule set, 246
tabula rasa runs, 254-256
Wilson's results, 293295
mudtiplexeroutput, 240
Multiplier learning task, 302-303
mutation, 6G5—66
Mutation, 10, 14
Cavicchio's operators, 96
in a classifier system, 229

Index

cubic gaussian, 102

in diploid scheme, 165

directed, 98

example of, 17

in evolutionary programming, 105
106

Fletcher-Reeves, 102
frequency of, 14

knowledge-augmented, 204
in Pascal, 65

probability of, 71, 11

quadratic gaussian, 102

schema survival under, 32

secondary role of, 14

simple, 14

uniform random, 102

n* estimate of schema processing, 20,
40-41
nactive, 231-232
niclassifier, 230
ncross, 64
ncrossover, 236
Nelder, J. A, 104
Network genetic algorithm, 209
MNeural nerworks, 278
newpop, 60, 68
Niche, 185-197
in classifier systems, 225
by crowding, 116, 118
in genetic algorithms, 189-195
motivation for, 185-180
by preselection operator, 96
by sharing function, 191-195
Nishett, R. E.,, 251, 270, 309
nmutation, G4, 236
Nondominated sorting selection, 201
Nondomination, 198-199
Nonlinearity; see Epistasis
Nonparametric selection, 124
Normal noise, 234
Notions-ideas framework; see Ideas-
notions framework
nparms, 84
nposition, 230

Obiject-based design, 210-211
objective, 79
Objective function
in Pascal, 67
sec also Payoff
objfunc, 67-68
Off-line performance, 107, 110

409

Offspring generation function, 94-95
OGF; see Offspring generation function
oldpop, 60, 68
oldwinner, 233
On-line performance, 107
Oliver, I. M., 174-175
Optimal control, 84-85, 131-135
Optimization
goals of, 67
process versus destination, 6
robustness of traditional methods, 2—
5
see also Function optimization,
Search
Order, 29
Order crossover; see Crossover, order
O-schema; see Schema, ordering
output, 240
Owens, A.]., 105-106
OX; see Crossover, order

Panmixia, 191
Parallel genetic algorithms; see Genetic
algorithms, parallel
Parallel processing, 262
Parameters
coding of, 7-9
set, correspondence o phenotype,
21
Payoff, 7
parentl, 64-65
parent2, 64-65
Pareto optimality, 197-198
Partial intersection operator; see
Intersection operator, partial
Partial matching, 278
Partially matched crossover; see
Crossover, partially matched
partsum, 63
Pattern recognition, 95-97
Pattern-searching task, 277-279
payment, 234
Payments, 226228
pcross, 62, 64, 71
perossover, 236
Penalty method, 85-86
Performance measures; see Measures of
performance
Performance system; see Rule and
message system
Permutation, 170
Perry, Z. A., 190
Pettey, C. B., 212

410

Index

pfile 232
Phenotype, 21, 60
Phillips, D. T, 6
Pike, M. C., 234
Pipeline operations classifier system,
288-292
PL, 301
PL-, 301-303
Plant pollination model, 210-211
pmutation, 62, 64, 71, 236
PMX; see Crossover, partially matched
Poker learning task, 275-276
Ponce de Leon algorithm, 267
pop, 123
popsize, 61, 66, 71
P-optimality; see Pareto optimality
poptype, 230-231
population, 60, 231
Populations
advantage of, 9
calculating statistics related to, 68—
69
in computer program, 60-61, 66—67
example, 9-10
importance of, 7, 90, 92
initialization of, 15
isolation, 191
nonoverlapping, 60, 62
notation for, 28
number of schemata in, 20
overlapping in a classifier system,
229
size of, 71, 101, 111
Positive assortive mating, 278-279
Post, E. L., 221, 264
Powell, M. . D, 120
poweroftwo, 67
PRAXIS, 120
Premature convergence, 74, 77
prescale 78
preselect, 123
Preselection, 96, 190
Principle of meaningful building blocks,
B0
Principle of minimal alphabets, 80
Prisoner's dilemma problem, 140-142
Probabilistic operators, use of, 7, 10
Production rules, 218
Production system, 221
proportionselect, 236

Rabins, M.]., 228
rand, 63

random, 63, 65
Random number generator, 63
Random walks, 5
Ranking, 124-125
nondominated, 201
Receipts, 226-228
Rechenberg, L, 104-105
reinforcement, 243
reinforcementrec, 243
Reitman, J. S., 265, 274, 282
Reordering operators, 166—-179
history of, 167-175
theory of, 175-179
rep, 232
report, 69-70, 243
reportflag, 243
reportga, 243
Reproduction, 10-12, 15
example of, 11-12
in Pascal, 62-64
rfile 232
Richardson, J., 191-192
Riolo, R. L., 224
rmnd, 63, 65
Robustness, 1-2, 9-10
Rosenberg, R. §,, 42, 93-95, 123, 151,
199, 264
Rosmaita, B.], 204-206
Roulette wheel selection, 237
Rule and message system, 221, 223~
225
example of match, 224
in Pascal, 232-233
Rule-based system; see Production
system

Sampling, 121
Samtani, M. P, 136-137
Samuel, A. L., 92, 262
“Satisficing,” 7
scale, 79
scalepop, 78-79
Scaling, 123124

early examples of, 93

of fitness values, 76—-79

linear, 77, 123

in Pascal, 78-79

power law, 123124

with sigma truncation, 123-124
Schaffer, J. D., 94, 180, 197, 199
Schema, 18-19

-€onnection to k-armed bandit

problem, 39

Index

counting arguments, 19-20
disruption by crossover, 20
disruption by mutation, 20
environmental, 218
examples of, 19
extended analysis of, 49-50, 179
external, 190
growth equation, 30-33
hand calculation, 33-35
in hierarchical structures, 262
history of, 92
notation for, 29
number available in binary versus
nonbinary codes, 81
order, 29
ordering, 177-179
plausibility of, 19
theorem, 30-33
theorem, extension to dominance
and diploidy, 157-160
useful processing of, 40-41
visualization as hyperplanes, 53-54
visualization of periodicity, 42—45
Schemata; see Schema
Schemata processors, 218, 262-264
Schmolze, J., 296
Schwefel, H., 104
8CS, 230-256
data structures, 230-232
default hierarchy tests, 247, 249, 254
general results, 254
parameter settings, 246
perfect set of rules, 247
results from, 245-256
Search
blind, 9
calculus-based methods, 2—4
enumerative, 4-5
hill-climbing, 3
point-by-point, 9
randomized versus random, 5
robustness of different methods, 2-6
zero-finding, 2-3
see also Function optimization,
Optimization
Segregation, 179180
select, 64, 66, 123, 164, 237
Selection, 10-11
of classifiers by auction, 225
comparison of different schemes,
121-123
by elitism, 115-118
in evolutionary programming, 105

amn

expected value model, 115-118
Hollstien's schemes, 99
importance of, 90
by ranking, 124-125
roulette wheel, 11-12, 1516, 63
stochastic remainder, 121-123%
Self-contained controls, 93
Semantic networks, 296
Semisynchronous master-slave genetic
algorithm, 208-209
Sensitivity analysis, 207
Sequential program learning task, 301-
303
Serial bottleneck, 208
Sex, 181-184
SGA, 59-75
comparison to genetic algorithm in
SCS, 229
data structures, 60-62
main program, 68—69
results from, 70-75
SGADOM, 162-165
Sharing, 191-195
among classifiers, 225, 278, 286
function, 191-192
genotypic, 192
phenotypic, 191-192
signal, 240-241
Similarity, 1819, see also Schema
Similarity subsets; see Schema
Similarity templates; see Schema
Simon, H. A., 7
Simple classifier system; see SCS
Simple genetic algorithm; see SGA
Simulated annealing, 5, 205
sitecross, 236
Smith, D. J., 174-175
Smith, R. E., 154-157, 161
Smith, 8. F, 180, 270-272, 274, 303
Specialization, 182-197
between species, 185-197
within species, 182—-184
Speciation, 185-197
specificity, 234
Spendley, W., 104
statistics, 63, 68-69, 236
Stochastic remainder selection; see
Selection, stochastic remainder
Strength, 225
difference equations, 226—228
strength, 230, 234
String rules; see Classifiers
Strings, 8

Index

Strings, continued
correspondence 1o chromosomes,
21-22
decoding of, 15, 66—67
effect of crossover on, 12
notation for, 28
population of, 9-11
position dependence of meaning, 28
similarities among, 18; see also
Schema
Structural optimization, 136-137
Structure, 21
Subroutine selection task, 95
Subsumption, 299
Suh,J. Y, 212
sumfitness, 62—63, 68, 79
sumstrength, 238
SUPERC link, 296, 299
Symbolic artificial intelligence, 296
Synchronous master-slave genetic
algorithm, 208
Syslo, M. M., 202

Takahashi, Y., 228
Tanese, R., 212
taxcollector, 233, 236
Taxes, 226—228, 236
TB, 301-303
tfile 232
Thagard, P. R., 251, 270, 309
Thompson, G. L., 172
Time-to-payoff estimation, 286—-287
timekeeper, 243
Translocation, 180
Traveling salesman problem, 170174,
204-206
Triallelic dominance, 151-152
in Pascal, 162-165
trit, 230
TSP, see Traveling salesman problem
Two-armed bandit, 28, 36—41
with sharing, 187-188
see also K-armed bandit

uavg, 78

Uhr, L., 92

umax, 78

wumin, 78

Unification of data and instructions,
265

wurilityses, 234

Van Gucht, D., 138, 204-206, 212

Variable binding, 273

Vecchi, M. P, 205

VEGA; see Genetic algorithms, vector-
evaluated

Vincent, T. L., 199

von Neumann, J., 262

Vossler, C., 92

Walsh function analysis, 45

Walsh-schema transform, 42

Walsh, M. J., 105-106

Waterman, D. A, 275-276

Weinberg, R., 98-99

Wetzel, A., 121

Wild card symbol, 224, 232

Wilde, D.], 6

Wilson, 5. W., 236, 238, 279, 282, 285,
287, 293, 295

winner, 233

Wong, P. J., 125, 130-131, 134

Woods, 285-286

worstofn, 238

writechrom, 69-70, 165

X chromosome, 181
Y chromosome, 181

Z-transforms, 228
Zeigler, B. P, 102, 202, 204

Other Addison-Wesley Related Titles
of Interest:

Aho/Hopcroft/Ullman, Data Structures
and Algorithms, 1982

Baase, Computer Algorithms: Introduc-
tion to Design and Analysis, 1988,
Charniak/McDermott, ntroduction to
Artificial Intelligence 1985.
Fischler/Firschein, Intelligence The Eye,
The Brain, and The Computer, 1987
Gale, Artificial Intelligence and
Statistics, 1986.

Gonnet, Handbook of Algorithms and
Dala Structures, 1983.

Harel, Algorithmics: The Spirit of
Computing 1987
Hayes-Roth/Waterman/Lenat, Building
Expert Systems, 1983.

Knuth, The Art of Computer Program-
ming: Vol I: Fundamental Algorithms,
Second Edition, 1983.

Knuth, The Art of Computer Program-
ming: Vol II: Seminwmerical Algorithms,
Second Edition, 1981,

Knuth, The Art of Computer Program-
ming: Vol. Ill: Sorting and Searching,
1973.

Manna/Waldinger, T'he Logical Basis for
Comprter Programming, Volume [
Deductive Reasoning, 1985.

Pearl, Heuristics: Intelligent Search
Strategies for Computer Problem
Solving, 1984.

Sedgewick, Algorithms, Second

Edition, 1988.

Waterman, A Guide to Expert

Systems, 1986.

Winograd/Flores, Understanding
Computers and Cognition, 1988.
Winston, Artificial Intelligence Second
Edition, 1984.

Winston/Horn, LISE Third Edition, 1989.

GENETIC
ALGORITHMS

\.l .::'"j{
(.ff,a.-";";m_m'.w.r;f G

Weichine Lecrning

by David E. Goldberg

ith Foii .-.-.-J._.-'J'.|-l|': hin Holland

This text introduces the theory. operation, and application of genetic algorithms — search algo-
rithms based on the mechanics of natural selection and genetics. Although genetic algorithms
(GAs) are already considered to be an important methodology in the development of search and
machine-learning methods, only recently have they received attention in other research and
industrial circles. The reliance of GAs on biological metaphor, theory, and terminology, com-
bined with the lack of a basic introducton to the subject, has obscured them from potential users
and hidden their value as broadly applicable, powerful techniques that are both easy to under-
stand and to use.

Genetic Algorithms in Search, Optimization, and Machine Learning brings together for the

first time, in an informal, tutorial fashion, the computer techniques, mathematical tools, and
research results that will enable both students and practitioners to apply genetic algorithms to
problems in many fields; programmers, scientists, engineers, mathematicians, statisticians and
management scientists will all find interesting possibilities here. The book is suitable both for
course work and for self-study. Major concepts are illustrated with running examples, and major
algorithms are illustrated by Pascal computer programs. Chapters conclude with exercises and
computer assignments. No prior knowledge of GAs or genetics is assumed, and only a minimum of
computer programming and mathematics background is required.

.does an exceptional job of making the methods of GAs and classifier systems available to a

wide audience . . ."
From the Foreword

““ 20000
Artificial Inrelligence

80201™1

ISBN 0-201-157b7=-5

Addison-Wesley Publishing Company

